Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct;144(4):1300-1310.
doi: 10.1378/chest.12-2597.

Perfluoropropane gas as a magnetic resonance lung imaging contrast agent in humans

Affiliations

Perfluoropropane gas as a magnetic resonance lung imaging contrast agent in humans

Ahmed F Halaweish et al. Chest. 2013 Oct.

Abstract

Background: Fluorine-enhanced MRI is a relatively inexpensive and straightforward technique that facilitates regional assessments of pulmonary ventilation. In this report, we assess its suitability through the use of perfluoropropane (PFP) in a cohort of human subjects with normal lungs and subjects with lung disease.

Methods: Twenty-eight subjects between the ages of 18 and 71 years were recruited for imaging and were classified based on spirometry findings and medical history. Imaging was carried out on a Siemens TIM Trio 3T MRI scanner using two-dimensional, gradient echo, fast low-angle shot and three-dimensional gradient echo, volumetric, interpolated, breath-hold examination sequences for proton localizers and PFP functional scans, respectively. Respiratory waveforms and physiologic signals of interest were monitored throughout the imaging sessions. A region-growing algorithm was applied to the proton localizers to define the lung field of view for analysis of the PFP scans.

Results: All subjects tolerated the gas mixture well with no adverse side effects. Images of healthy lungs demonstrated a homogeneous distribution of the gas with sufficient signal-to-noise ratios, while lung images from asthmatic and emphysematous lungs demonstrated increased heterogeneity and ventilation defects.

Conclusions: Fluorine-enhanced MRI using a normoxic PFP gas mixture is a well-tolerated, radiation-free technique for regionally assessing pulmonary ventilation. The inherent physical characteristics and applicability of the gaseous agent within a magnetic resonance setting facilitated a clear differentiation between normal and diseased lungs.

PubMed Disclaimer

Publication types