Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jul 8:36:429-49.
doi: 10.1146/annurev-neuro-062111-150455. Epub 2013 May 29.

Electrical compartmentalization in dendritic spines

Affiliations
Review

Electrical compartmentalization in dendritic spines

Rafael Yuste. Annu Rev Neurosci. .

Abstract

Most excitatory inputs in the CNS contact dendritic spines, avoiding dendritic shafts, so spines must play a key role for neurons. Recent data suggest that, in addition to enhancing connectivity and isolating synaptic biochemistry, spines can behave as electrical compartments independent from their parent dendrites. It is becoming clear that, although spines experience voltages similar to those of dendrites during action potentials (APs), spines must sustain higher depolarizations than do dendritic shafts during excitatory postsynaptic potentials (EPSPs). Synaptic potentials are likely amplified at the spine head and then reduced as they invade the dendrite through the spine neck. These electrical changes, probably due to a combination of passive and active mechanisms, may prevent the saturation of dendrites by the joint activation of many inputs, influence dendritic integration, and contribute to rapid synaptic plasticity. The electrical properties of spines could enable neural circuits to harness a high connectivity, implementing a "synaptic democracy," where each input can be individually integrated, tallied, and modified in order to generate emergent functional states.

PubMed Disclaimer

Publication types

LinkOut - more resources