Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 May 15;126(Pt 10):2141-50.
doi: 10.1242/jcs.127449. Epub 2013 May 31.

Ca2+ signalling early in evolution--all but primitive

Affiliations
Free article
Review

Ca2+ signalling early in evolution--all but primitive

Helmut Plattner et al. J Cell Sci. .
Free article

Abstract

Early in evolution, Ca(2+) emerged as the most important second messenger for regulating widely different cellular functions. In eukaryotic cells Ca(2+) signals originate from several sources, i.e. influx from the outside medium, release from internal stores or from both. In mammalian cells, Ca(2+)-release channels represented by inositol 1,4,5-trisphosphate receptors and ryanodine receptors (InsP3R and RyR, respectively) are the most important. In unicellular organisms and plants, these channels are characterised with much less precision. In the ciliated protozoan, Paramecium tetraurelia, 34 molecularly distinct Ca(2+)-release channels that can be grouped in six subfamilies, based on criteria such as domain structure, pore, selectivity filter and activation mechanism have been identified. Some of these channels are genuine InsP3Rs and some are related to RyRs. Others show some--but not all--features that are characteristic for one or the other type of release channel. Localisation and gene silencing experiments revealed widely different--yet distinct--localisation, activation and functional engagement of the different Ca(2+)-release channels. Here, we shall discuss early evolutionary routes of Ca(2+)-release machinery in protozoa and demonstrate that detailed domain analyses and scrutinised functional analyses are instrumental for in-depth evolutionary mapping of Ca(2+)-release channels in unicellular organisms.

Keywords: Ca2+; Ca2+-release channels; Calcium; Protist; Protozoa.

PubMed Disclaimer

Publication types

LinkOut - more resources