Machine learning and genome annotation: a match meant to be?
- PMID: 23731483
- PMCID: PMC4053789
- DOI: 10.1186/gb-2013-14-5-205
Machine learning and genome annotation: a match meant to be?
Abstract
By its very nature, genomics produces large, high-dimensional datasets that are well suited to analysis by machine learning approaches. Here, we explain some key aspects of machine learning that make it useful for genome annotation, with illustrative examples from ENCODE.
Figures
References
-
- Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C. et al. Initial sequencing and analysis of the human genome. Nature. 2001;14:860–921. doi: 10.1038/35057062. - DOI - PubMed
-
- Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N. et al. The sequence of the human genome. Science. 2001;14:1304–1351. doi: 10.1126/science.1058040. - DOI - PubMed
-
- Alpaydin E. Introduction to Machine Learning. Cambridge, Massachusettes: The MIT Press; 2004.
-
- Baldi P, Brunak S. Bioinformatics: The Machine Learning Approach. 2. Cambridge, Massachusettes: MIT Press; 2001.
-
- Mitchell T. Machine Learning. New York: McGraw Hill; 1997.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
