Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun 21;58(12):4331-40.
doi: 10.1088/0031-9155/58/12/4331. Epub 2013 Jun 4.

Dual energy imaging using a clinical on-board imaging system

Affiliations

Dual energy imaging using a clinical on-board imaging system

M A Hoggarth et al. Phys Med Biol. .

Abstract

Dual energy (DE) imaging consists of obtaining kilovoltage (kV) x-ray images at two different diagnostic energies and performing a weighted subtraction of these images. A third image is then produced that highlights soft tissue. DE imaging has been used by radiologists to aid in the detection of lung malignancies. However, it has not been used clinically in radiotherapy. The goal of this study is to assess the feasibility of performing DE imaging using a commercial on-board imaging system. Both a simple and an anthropomorphic phantom were constructed for this analysis. Planar kV images of the phantoms were obtained using varied imaging energies and mAs. Software was written to perform DE subtraction using empirically determined weighting factors. Tumor detectability was assessed quantitatively using the signal-difference-to-noise ratio (SDNR). Overall DE subtraction suppressed high density objects in both phantoms. The optimal imaging technique, providing the largest SDNR with a dose less than our reference technique was 140 kVp, 1.0 mAs and 60 kVp, 3.2 mAs. Based on this analysis, DE subtraction imaging is feasible using a commercial on-board imaging system and may improve the visualization of tumors in lung cancer patients undergoing image-guided radiotherapy.

PubMed Disclaimer

Publication types