Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jul;26(7):745-57.
doi: 10.1094/MPMI-06-12-0154-R.

In planta effector competition assays detect Hyaloperonospora arabidopsidis effectors that contribute to virulence and localize to different plant subcellular compartments

Affiliations
Free article

In planta effector competition assays detect Hyaloperonospora arabidopsidis effectors that contribute to virulence and localize to different plant subcellular compartments

Jorge Luis Badel et al. Mol Plant Microbe Interact. 2013 Jul.
Free article

Abstract

The genome of the pathogenic oomycete Hyaloperonospora arabidopsidis is predicted to encode at least 134 high-confidence effectors (HaRxL) carrying the RxLR motif implicated in their translocation into plant cells. However, only four avirulence genes (ATR1, ATR13, ATR5, and ATR39) have been isolated. This indicates that identification of HaRxL effectors based on avirulence is low throughput. We aimed at rapidly identifying H. arabidopsidis effectors that contribute to virulence by developing methods to detect and quantify multiple candidates in bacterial mixed infections using either Illumina sequencing or capillary electrophoresis. In these assays, referred to here as in planta effector competition assays, we estimate the contribution to virulence of individual effectors by calculating the abundance of each HaRxL in the bacterial population recovered from leaves 3 days after inoculation relative to abundance in the initial mixed inoculum. We identified HaRxL that enhance Pseudomonas syringae pv. tomato DC3000 growth in some but not all Arabidopsis accessions. Further analysis showed that HaRxLL464, HaRxL75, HaRxL22, HaRxLL441, and HaRxL89 suppress pathogen-associated molecular pattern-triggered immunity (PTI) and localize to different subcellular compartments in Nicotiana benthamiana, providing evidence for a multilayered suppression of PTI by pathogenic oomycetes and molecular probes for the dissection of PTI.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources