Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation
- PMID: 23736637
- DOI: 10.1364/OE.21.013824
Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation
Abstract
In this study we show that it is possible to successfully combine the benefits of light-sheet microscopy, self-reconstructing Bessel beams and two-photon fluorescence excitation to improve imaging in large, scattering media such as cancer cell clusters. We achieved a nearly two-fold increase in axial image resolution and 5-10 fold increase in contrast relative to linear excitation with Bessel beams. The light-sheet penetration depth could be increased by a factor of 3-5 relative to linear excitation with Gaussian beams. These finding arise from both experiments and computer simulations. In addition, we provide a theoretical description of how these results are composed. We investigated the change of image quality along the propagation direction of the illumination beams both for clusters of spheres and tumor multicellular spheroids. The results reveal that light-sheets generated by pulsed near-infrared Bessel beams and two photon excitation provide the best image resolution, contrast at both a minimum amount of artifacts and signal degradation along the propagation of the beam into the sample.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
