Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 30;7(5):e2243.
doi: 10.1371/journal.pntd.0002243. Print 2013.

Genetic and phenotypic characterization of manufacturing seeds for a tetravalent dengue vaccine (DENVax)

Affiliations

Genetic and phenotypic characterization of manufacturing seeds for a tetravalent dengue vaccine (DENVax)

Claire Y-H Huang et al. PLoS Negl Trop Dis. .

Abstract

Background: We have developed a manufacturing strategy that can improve the safety and genetic stability of recombinant live-attenuated chimeric dengue vaccine (DENVax) viruses. These viruses, containing the pre-membrane (prM) and envelope (E) genes of dengue serotypes 1-4 in the replicative background of the attenuated dengue-2 PDK-53 vaccine virus candidate, were manufactured under cGMP.

Methodology/principal findings: After deriving vaccine viruses from RNA-transfected Vero cells, six plaque-purified viruses for each serotype were produced. The plaque-purified strains were then analyzed to select one stock for generation of the master seed. Full genetic and phenotypic characterizations of the master virus seeds were conducted to ensure these viruses retained the previously identified attenuating determinants and phenotypes of the vaccine viruses. We also assessed vector competence of the vaccine viruses in sympatric (Thai) Aedes aegypti mosquito vectors.

Conclusion/significance: All four serotypes of master vaccine seeds retained the previously defined safety features, including all three major genetic loci of attenuation, small plaques, temperature sensitivity in mammalian cells, reduced replication in mosquito cell cultures, and reduced neurovirulence in new-born mice. In addition, the candidate vaccine viruses demonstrated greatly reduced infection and dissemination in Aedes aegypti mosquitoes, and are not likely to be transmissible by these mosquitoes. This manufacturing strategy has successfully been used to produce the candidate tetravalent vaccine, which is currently being tested in human clinical trials in the United States, Central and South America, and Asia.

PubMed Disclaimer

Conflict of interest statement

CYHH and RMK are inventors of the patent regarding the vaccine technology described in this manuscript. Authors indicated with affiliation and/or current address of Inviragen are current Inviragen employees. These authors may receive certain benefits resulting from the success of DENVax.

Figures

Figure 1
Figure 1. Plaque sizes of the DENVax MVS.
Mean plaque diameters (mm) ± SD (error bars) of the virus plaques in Vero cells under agarose overlay measured on day 9 pi. The wt DENVs and previously published research-grade vaccine candidate viruses were included for control and comparison.
Figure 2
Figure 2. Temperature sensitivities of DENVax MVS.
Mean titers ± SD (error bars) of the viruses replicated in Vero cells at 37°C or 39°C. The wt DENVs and previously published research-grade vaccine candidate viruses were included for comparison. The DENVax-4 MVS contains additional F-127 that can mask the temperature sensitivity results of the virus in this assay. A separate experiment analyzing a surrogate DENVax-4 in the absence of F127 was also included.
Figure 3
Figure 3. Restricted growth of DENVax MVS in C6/36 cells.
Mean titers ± SD (error bars) of the viruses replicated in C6/36 cells 6 days pi. The wt DENVs and previously published research-grade vaccine candidate viruses were included for comparison.
Figure 4
Figure 4. Neurovirulence in newborn mice.
Pooled results of numerous experiments summarizing the neurovirulence of wt DENV-2 16681 virus in CDC-ICR (n = 72) and Taconic-ICR (n = 32) newborn mice challenged ic with 104 pfu of the virus (A). Neurovirulence of DENVax MVS tested in Taconic-ICR mice with a dose of 104 pfu (B) or 103 pfu (C). The numbers of animals tested per group in one experiment (n = 16) or two pooled experiments (n = 31 or 32) are indicated.

References

    1. World Heath Organization (2012) Global Strategy for dengue prevention and control, 2012–2020: WHO Press. vi, 43 p.
    1. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, et al. (2010) Dengue: a continuing global threat. Nat Rev Microbiol 8: S7–16. - PMC - PubMed
    1. Halstead SB (1988) Pathogenesis of dengue: challenges to molecular biology. Science 239: 476–481. - PubMed
    1. Halstead SB, Mahalingam S, Marovich MA, Ubol S, Mosser DM (2010) Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infect Dis 10: 712–722. - PMC - PubMed
    1. Huang CY, Butrapet S, Pierro DJ, Chang GJ, Hunt AR, et al. (2000) Chimeric dengue type 2 (vaccine strain PDK-53)/dengue type 1 virus as a potential candidate dengue type 1 virus vaccine. J Virol 74: 3020–3028. - PMC - PubMed

Publication types

MeSH terms