Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Aug 1;305(3):R175-86.
doi: 10.1152/ajpregu.00109.2013. Epub 2013 Jun 5.

Physiological and molecular mechanisms of salt and water homeostasis in the nematode Caenorhabditis elegans

Affiliations
Free article
Review

Physiological and molecular mechanisms of salt and water homeostasis in the nematode Caenorhabditis elegans

Keith P Choe. Am J Physiol Regul Integr Comp Physiol. .
Free article

Abstract

Intracellular salt and water homeostasis is essential for all cellular life. Extracellular salt and water homeostasis is also important for multicellular organisms. Many fundamental mechanisms of compensation for osmotic perturbations are well defined and conserved. Alternatively, molecular mechanisms of detecting salt and water imbalances and regulating compensatory responses are generally poorly defined for animals. Throughout the last century, researchers studying vertebrates and vertebrate cells made critical contributions to our understanding of osmoregulation, especially mechanisms of salt and water transport and organic osmolyte accumulation. Researchers have more recently started using invertebrate model organisms with defined genomes and well-established methods of genetic manipulation to begin defining the genes and integrated regulatory networks that respond to osmotic stress. The nematode Caenorhabditis elegans is well suited to these studies. Here, I introduce osmoregulatory mechanisms in this model, discuss experimental advantages and limitations, and review important findings. Key discoveries include defining genetic mechanisms of osmolarity sensing in neurons, identifying protein damage as a sensor and principle determinant of hypertonic stress resistance, and identification of a putative sensor for hypertonic stress associated with the extracellular matrix. Many of these processes and pathways are conserved and, therefore, provide new insights into salt and water homeostasis in other animals, including mammals.

Keywords: cell volume; ion; model organism; organic osmolyte; osmoregulation; protein homeostasis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources