Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 31;8(5):e64910.
doi: 10.1371/journal.pone.0064910. Print 2013.

Time course of the cross-over effect of fatigue on the contralateral muscle after unilateral exercise

Affiliations

Time course of the cross-over effect of fatigue on the contralateral muscle after unilateral exercise

Aude-Clémence M Doix et al. PLoS One. .

Abstract

We investigated the cross-over effect of muscle fatigue and its time course on the non-exercising contralateral limb (NEL) after unilateral fatiguing contractions of the ipsilateral exercising limb (EL). For this purpose, 15 males performed two bouts of 100-second maximal isometric knee extensions with the exercising limb, and neuromuscular function of both the EL and NEL was assessed before (PRE), after a first fatiguing exercise (MID) and after a second fatiguing exercise (POST). Maximal voluntary isometric torque production declined in the EL after the first bout of exercise (-9.6%; p<0.001) while in the NEL, the decrease occurred after the second bout of exercise (-10.6%; p<0.001). At MID, torque decline of the EL was strictly associated to an alteration of the mechanical twitch properties evoked by neurostimulation of the femoral nerve (i.e., peak twitch torque, maximal rate of twitch development). According to these markers, we suggest that peripheral fatigue occurred. At POST, after the second bout of exercise, the voluntary activation level of the knee extensor muscles was altered from PRE (-9.1%; p<0.001), indicating an overall central failure in both the EL and NEL. These findings indicate that two bouts of unilateral fatiguing exercise were needed to induce a cross-over effect of muscle fatigue on the non-exercising contralateral limb. Differential adjustments of the motor pathway (peripheral fatigue vs. central fatigue) might contribute to the respective torque decline in the EL and the NEL. Given that our unilateral fatiguing exercise induced immediate maximal torque reduction in the EL and postponed the loss of torque production in the NEL, it is also concluded that the time course of muscle fatigue differed between limbs.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Graphical overview of the experimental protocol.
Neuromuscular tests comprised single stimuli (single arrows), doublet stimuli (double arrows), MVC with superimposed doublet stimulus and followed by a doublet stimulus delivered at rest. Two MVCs of the exercising limb (EL; uninterrupted line) and the non-exercising limb (NEL; dashed lines) were performed at PRE, while only one was respectively realised at MID and POST. Testing order for the EL and NEL was randomly selected. The fatiguing exercise of the EL consisted of two bouts of 100-second MVC.
Figure 2
Figure 2. Maximal voluntary isometric torque.
Maximal voluntary isometric torque tests of the knee extensor muscles measured at PRE, MID and POST tests for the exercising limb (A) and the non-exercising limb (B). Columns represent group mean values, while triangles, squares black and white symbols show individual values. Error bars are the standard error of the group mean. Significant differences p<0.05 (*) and p<0.001 (***).
Figure 3
Figure 3. Voluntary activation level of the knee extensor muscles.
Voluntary activation level measured at PRE, MID and POST tests for the exercising limb (in grey) and the non-exercising limb (in white). Columns represent group mean values and error bars are the standard error of the group mean. Significant differences p<0.001 (***).
Figure 4
Figure 4. Torque production capacity and sEMG activity during the fatiguing exercises.
Torque production capacity measured during the 10 periods of the first (black circles) and the second (white circles) fatiguing exercise for the exercising limb (A). Pooled data of the considered period significantly lower from the pooled data of the first period: p<0.01 (**) and p<0.001 (***). sEMG RMS/Mmax ratios of the vastus lateralis (diamonds), the vastus medialis (triangles), the rectus femoris (squares) muscles and coactivation level (circles) of the semitendinosus (ST) muscle during the 10 periods of the first (B) and second (C) fatiguing exercise. Values are mean and standard error of the mean.

References

    1. Mosso A, Drummond M, Drummond WB (1906) Fatigue. London: New York: S. Sonnenschein, G. P. Putnam’s Sons. xiv, 334 p. p. Available: http://catalog.hathitrust.org/Record/007701583. Accessed 10 February 2013.
    1. Kennedy A, Hug F, Sveistrup H, Guével A (2012) Fatiguing handgrip exercise alters maximal force-generating capacity of plantar-flexors. Eur J Appl Physiol. doi:10.1007/s00421-012-2462-1. - DOI - PubMed
    1. Zijdewind I, Zwarts MJ, Kernell D (1998) Influence of a voluntary fatigue test on the contralateral homologous muscle in humans? Neurosci Lett 253: 41–44. - PubMed
    1. Zijdewind I, Kernell D (2001) Bilateral interactions during contractions of intrinsic hand muscles. J Neurophysiol 85: 1907–1913. - PubMed
    1. Todd G, Petersen NT, Taylor JL, Gandevia SC (2003) The effect of a contralateral contraction on maximal voluntary activation and central fatigue in elbow flexor muscles. Exp Brain Res 150: 308–313 doi:10.1007/s00221-003-1379-7 - DOI - PubMed

Publication types