Designing the next generation of medicines for malaria control and eradication
- PMID: 23742293
- PMCID: PMC3685552
- DOI: 10.1186/1475-2875-12-187
Designing the next generation of medicines for malaria control and eradication
Abstract
In the fight against malaria new medicines are an essential weapon. For the parts of the world where the current gold standard artemisinin combination therapies are active, significant improvements can still be made: for example combination medicines which allow for single dose regimens, cheaper, safer and more effective medicines, or improved stability under field conditions. For those parts of the world where the existing combinations show less than optimal activity, the priority is to have activity against emerging resistant strains, and other criteria take a secondary role. For new medicines to be optimal in malaria control they must also be able to reduce transmission and prevent relapse of dormant forms: additional constraints on a combination medicine. In the absence of a highly effective vaccine, new medicines are also needed to protect patient populations. In this paper, an outline definition of the ideal and minimally acceptable characteristics of the types of clinical candidate molecule which are needed (target candidate profiles) is suggested. In addition, the optimal and minimally acceptable characteristics of combination medicines are outlined (target product profiles). MMV presents now a suggested framework for combining the new candidates to produce the new medicines. Sustained investment over the next decade in discovery and development of new molecules is essential to enable the long-term delivery of the medicines needed to combat malaria.
Figures
References
-
- World Health Organization. World Malaria Report. 2011. http://www.who.int/malaria/world_malaria_report_2011/en/
-
- Roll Back Malaria. RBM Anual Report 2011. 2012. http://www.rollbackmalaria.org/
-
- Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419:498–511. - PMC - PubMed
-
- Pain A, Bohme U, Berry AE, Mungall K, Finn RD, Jackson AP, Mourier T, Mistry J, Pasini EM, Aslett MA, Balasubrammaniam S, Borgwardt K, Brooks K, Carret C, Carver TJ, Cherevach I, Chillingworth T, Clark TG, Galinski MR, Hall N, Harper D, Harris D, Hauser H, Ivens A, Janssen CS, Keane T, Larke N, Lapp S, Marti M, Moule S. et al. The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature. 2008;455:799–803. - PMC - PubMed
-
- Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, Crabtree J, Angiuoli SV, Merino EF, Amedeo P, Cheng Q, Coulson RM, Crabb BS, Del Portillo HA, Essien K, Feldblyum TV, Fernandez-Becerra C, Gilson PR, Gueye AH, Guo X, Kang’a S, Kooij TW, Korsinczky M, Meyer EV, Nene V, Paulsen I, White O, Ralph SA, Ren Q, Sargeant TJ. et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature. 2008;455:757–763. - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
