Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun 4;104(11):L22-4.
doi: 10.1016/j.bpj.2013.02.059.

Nanoscale distribution of ryanodine receptors and caveolin-3 in mouse ventricular myocytes: dilation of t-tubules near junctions

Affiliations

Nanoscale distribution of ryanodine receptors and caveolin-3 in mouse ventricular myocytes: dilation of t-tubules near junctions

Joseph Wong et al. Biophys J. .

Abstract

We conducted super-resolution light microscopy (LM) imaging of the distribution of ryanodine receptors (RyRs) and caveolin-3 (CAV3) in mouse ventricular myocytes. Quantitative analysis of data at the surface sarcolemma showed that 4.8% of RyR labeling colocalized with CAV3 whereas 3.5% of CAV3 was in areas with RyR labeling. These values increased to 9.2 and 9.0%, respectively, in the interior of myocytes where CAV3 was widely expressed in the t-system but reduced in regions associated with junctional couplings. Electron microscopic (EM) tomography independently showed only few couplings with caveolae and little evidence for caveolar shapes on the t-system. Unexpectedly, both super-resolution LM and three-dimensional EM data (including serial block-face scanning EM) revealed significant increases in local t-system diameters in many regions associated with junctions. We suggest that this regional specialization helps reduce ionic accumulation and depletion in t-system lumen during excitation-contraction coupling to ensure effective local Ca²⁺ release. Our data demonstrate that super-resolution LM and volume EM techniques complementarily enhance information on subcellular structure at the nanoscale.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Colocalization of CAV3 and RyRs at the surface sarcolemma. (A) Super-resolution micrograph of the distribution of CAV3 (green) and RyRs (red) at the surface of a mouse cardiac myocyte. (B) Analysis of the association of CAV3 with RyRs. The fraction of RyR labeling within CAV3 positive areas was ∼4.8% (front data) whereas ∼3.5% of CAV3 was found in RyR-positive membrane areas. (C) Segmented EM tomogram containing a patch of surface sarcolemma (light blue) and associated caveolae (green) as well as peripheral couplings (red). (D) Detailed view of a region with abundant caveolae. (Arrows) Couplings with caveolae.
Figure 2
Figure 2
Distribution of CAV3 and RyRs in the cell interior. (A) Super-resolution micrograph of CAV3 (green) and RyR (red) distribution at t-system. (Arrow) Direction of longitudinal cell axis. (B) Distance analysis of the CAV3 and RyR association (N = 6 cells per group). (C) Segmented EM tomogram of a similar region with three-dimensional mesh models of t-system membrane (green) and dyadic couplings (red). (D) This image illustrates the tracing (white path) of t-tubules. The label distribution was extracted and linearized along the path (E) to calculate a mask that shows the full width at quarter-maximum diameter along tubules, CAV3 (green) and RyR (red) (F). (G) Histograms of local diameters extracted from traced t-tubules. (H) Mean diameters in junctional (dyad) and nonjunctional (ex-dyad) regions. See main text and the Supporting Material for details. **p < 0.01.
Figure 3
Figure 3
Segmented SBFSEM data showing t-system dilations near dyadic junctions. (A) The overview shows t-system membranes (green) and jSR (red) in a mouse myocyte. (B, enlarged inset from panel A) Thin connecting tubules (arrows) and regular swellings in junctional regions at z-lines.

Comment in

References

    1. Franzini-Armstrong C., Protasi F. Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol. Rev. 1997;77:699–729. - PubMed
    1. Baddeley D., Jayasinghe I.D., Soeller C. Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc. Natl. Acad. Sci. USA. 2009;106:22275–22280. - PMC - PubMed
    1. Hayashi T., Martone M.E., Hoshijima M. Three-dimensional electron microscopy reveals new details of membrane systems for Ca2+ signaling in the heart. J. Cell Sci. 2009;122:1005–1013. - PMC - PubMed
    1. Scriven D.R.L., Klimek A., Moore E.D. Caveolin-3 is adjacent to a group of extradyadic ryanodine receptors. Biophys. J. 2005;89:1893–1901. - PMC - PubMed
    1. Jayasinghe I.D., Cannell M.B., Soeller C. Organization of ryanodine receptors, transverse tubules, and sodium-calcium exchanger in rat myocytes. Biophys. J. 2009;97:2664–2673. - PMC - PubMed

Publication types

Substances

LinkOut - more resources