Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan;21(1):138-45.
doi: 10.1177/1933719113492207. Epub 2013 Jun 7.

Effects of pravastatin on angiogenic and placental hypoxic imbalance in a mouse model of preeclampsia

Affiliations

Effects of pravastatin on angiogenic and placental hypoxic imbalance in a mouse model of preeclampsia

Antonio F Saad et al. Reprod Sci. 2014 Jan.

Abstract

In order to determine the effects of pravastatin (Pra) on angiogenic and placental hypoxic imbalance in a model of preeclampsia induced by overexpression of soluble fms-like tyrosine kinase 1 (sFlt-1), we randomly allocated pregnant CD1 mice to injection with adenovirus-carrying sFlt-1 or mFc (control). The sFlt-1 group received either Pra (sFlt-1 + Pra) or water (sFlt-1). Mice were sacrificed at day 18, and serum levels of sFlt-1 and soluble endoglin (sEng) were measured. Placental expression of placental (PLGF) and vascular endothelial (VEGF) growth factors and other markers of angiogenesis and hypoxia were assayed. We observed that Pra treatment in sFlt-1 mice reduced sFlt-1 and sEng concentrations at day 18 to levels similar to control group. Placental PLGF and VEGF expression were upregulated, and markers of hypoxia downregulated to levels similar to control group. Hence, Pra prevents the rise in circulating antiangiogenic factors in a mouse model of preeclampsia. Statins may represent a novel approach to prevention of preeclampsia.

Keywords: angiogenesis; placental growth factor; pravastatin; preeclampsia; soluble endoglin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances