Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 27:4:158.
doi: 10.3389/fpls.2013.00158. eCollection 2013.

Iron biofortification of myanmar rice

Affiliations

Iron biofortification of myanmar rice

May Sann Aung et al. Front Plant Sci. .

Abstract

Iron (Fe) deficiency elevates human mortality rates, especially in developing countries. In Myanmar, the prevalence of Fe-deficient anemia in children and pregnant women are 75 and 71%, respectively. Myanmar people have one of the highest per capita rice consumption rates globally. Consequently, production of Fe-biofortified rice would likely contribute to solving the Fe-deficiency problem in this human population. To produce Fe-biofortified Myanmar rice by transgenic methods, we first analyzed callus induction and regeneration efficiencies in 15 varieties that are presently popular because of their high-yields or high-qualities. Callus formation and regeneration efficiency in each variety was strongly influenced by types of culture media containing a range of 2,4-dichlorophenoxyacetic acid concentrations. The Paw San Yin variety, which has a high-Fe content in polished seeds, performed well in callus induction and regeneration trials. Thus, we transformed this variety using a gene expression cassette that enhanced Fe transport within rice plants through overexpression of the nicotianamine synthase gene HvNAS1, Fe flow to the endosperm through the Fe(II)-nicotianamine transporter gene OsYSL2, and Fe accumulation in endosperm by the Fe storage protein gene SoyferH2. A line with a transgene insertion was successfully obtained. Enhanced expressions of the introduced genes OsYSL2, HvNAS1, and SoyferH2 occurred in immature T2 seeds. The transformants accumulated 3.4-fold higher Fe concentrations, and also 1.3-fold higher zinc concentrations in T2 polished seeds compared to levels in non-transgenic rice. This Fe-biofortified rice has the potential to reduce Fe-deficiency anemia in millions of Myanmar people without changing food habits and without introducing additional costs.

Keywords: Myanmar rice; OsYSL2; anemia; biofortification; ferritin; iron; nicotianamine; rice transformation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Callus induction and regeneration efficiency in rice varieties Paw San Yin (V3) and Tsukinohikari in different medium combinations. (A) Tissue culture of Paw San Yin (V3) in the N6D-N6D-MSre-MS medium combination. (B) Tissue culture of Paw San Yin (V3) in the 2N6-2N6-MSre-MS medium combination. (C) Tissue culture of Tsukinohikari in the N6D-2N6-MSre-MS medium combination. See “Media Used for Callus Induction and Regeneration Test” in the Section “Materials and Methods” for medium combination. DAG, days after germination; DAT, days after transferring. The numerals shown inside parentheses mean DAG or DAT when photograph was taken on each medium.
Figure 2
Figure 2
Identification of the best medium combination for each variety. V1–V15 shown on upper right part of each picture represent the variety numbers described in Table 1 and TK means Tsukinohikari. The media combination described under each picture showed the best media combination for each variety. Pictures of regenerated plants were taken at 3 days after acclimation. Pictures of V5 and V7 were not shown as regenerated plants were not obtained from these two varieties.
Figure 3
Figure 3
Regeneration efficiency of Myanmar rice varieties and the Tsukinohikari variety. V1–V15 under horizontal bar represent the rice variety numbers described in Table 1 and TK means Tsukinohikari. Numbers on vertical bars are quotients of total numbers of regenerated plants divided by numbers of callus-induced seeds, which represent regeneration efficiency.
Figure 4
Figure 4
Durations of time required for green spot appearance in Myanmar rice varieties and in the variety Tsukinohikari. V1–V15 on vertical bar represent the variety numbers described in Table 1 and TK means Tsukinohikari. Durations of time from transfer to MSre media to green spot appearance are indicated. Regenerated plants were obtained from these green spots.
Figure 5
Figure 5
Transformation of Paw San Yin-Fer-NAS-YSL2. (A) Callus induction (at 29 DAG). (B) Pre-incubation (at 8 DAT). (C) Three days following Agrobacterium-infection. (D) Calli on 1st selection medium of N6D-CH10 (at 7 DAT). (E) Calli on 2nd selection medium of N6D-CH30 (at 14 DAT). (F) Calli on 3rd selection medium of N6D-CH50 (at 7 DAT). (G) Calli on MS regeneration medium (MSre-CH50) (at 20 DAT). (H) Calli on MSre-CH50 (at 32 DAT). (I) Green spots appearance of calli and shoots emergence on MS medium (at 4 DAT). (J) Regenerated plants on MS medium. (K) Greenhouse-grown T0 plants. Left panels of (C–F) show transformation with Agrobacterium at a concentration of OD = 0.01; right panels of (C–F) shows transformation at a concentration of OD = 0.1. The numerals shown with DAG or DAT mean DAG or DAT when photograph was taken on each medium.
Figure 6
Figure 6
Confirmation of gene insertion in transgenic Paw San Yin-Fer-NAS-YSL2 line 1. NT, non-transgenic Paw San Yin line; L1, Paw San Yin-Fer-NAS-YSL2 line 1; Vec, Fer-NAS-YSL2 vector (positive control). OsGlb promoter-SoyferH2, soybean Ferritin gene SoyferH2 with promoter region of the 26 kDa OsGlb1 gene; OsAct promoter-HvNAS1, barley nicotianamine synthase 1 gene with promoter region of the rice OsActin1 gene; HPT, hygromycin phosphotransferase gene; NPTII, neomycin phosphotransferase II gene; iGUS, β-glucuronidase gene with an intron; OsActin1, endogenous rice actin gene.
Figure 7
Figure 7
Metal concentrations in T1 polished seeds of Paw San Yin-Fer-NAS-YSL2. (A) Fe concentration. (B) Zn concentration. NT, non-transgenic Paw San Yin. L1, Paw San Yin-Fer-NAS-YSL2 transgenic line 1. Bars represent means ± SE, n = 3. Asterisks (**) above the bars indicate significant differences at P < 0.01 between NT and L1 (determined byt-test).
Figure 8
Figure 8
Greenhouse-grown T1 plants. Photograph was taken during tillering stage at 30 days after transplanting. NT, non-transgenic Paw San Yin. L1 sublines, Paw San Yin-Fer-NAS-YSL2 transgenic line 1 sublines.
Figure 9
Figure 9
Quantitative real-time RT-PCR analysis of HvNAS1, OsYSL2, and SoyferH2. (A) HvNAS1, (B) OsYSL2, and (C) SoyferH2 expression levels. T1 plants were cultivated in commercial soil (Bonsolichigou) in a greenhouse. Total RNA was extracted from immature T2 seeds (seeds at the early milky stage, 10 days after fertilization) of each line (n = 3). NT, non-transgenic Paw San Yin. L1-1, L1-2, and L1-3, Paw San Yin-Fer-NAS-YSL2 transgenic line 1 sublines. Bars represent means ± SE of three independent real-time RT-PCR reactions. Asterisks (*) and (**) above the bars indicate significant differences at P < 0.05 and P < 0.01, respectively, between NT and L1 sublines (determined by t-test). n.d., not detected.
Figure 10
Figure 10
Metal concentrations in T2 polished and brown seeds of Paw San Yin-Fer-NAS-YSL2. (A) Fe concentration in T2 polished seeds. (B) Zn concentration in T2 polished seeds. (C) Fe concentration in T2 brown seeds. (D) Zn concentration in T2 brown seeds. NT, non-transgenic Paw San Yin. L1-1, L1-2, and L1-3, Paw San Yin-Fer-NAS-YSL2 transgenic line 1 sublines. Bars represent means ± SE, n = 3. Asterisks (*) and (**) above the bars indicate significant differences at P < 0.05 and P < 0.01, respectively, between NT and L1 sublines demonstrated by t-tests.
Figure 11
Figure 11
Fe and Zn content per T2 seed of Paw San Yin-Fer-NAS-YSL2. (A) Fe content in husk, bran, and endosperm per T2 seed. (B) Zn content in husk, bran, and endosperm per T2 seed. NT, non-transgenic Paw San Yin; L1-1 and L1-2, Paw San Yin-Fer-NAS-YSL2 transgenic line 1 sublines. Metal content of polished seed is shown as endosperm. Metal content of bran is calculated by subtracting metal content of polished seed from that of brown seed.

References

    1. Akiyama K., Nakamura S., Suzuki T., Wisniewska I., Sasaki N., Kawasaki S. (1997). Development of a system of rice transformation with long genome inserts for their functional analysis for positional cloning. Plant Cell Physiol. 38, 94
    1. Amin M. A., Uddin M. A., Hossain M. A. (2004). Regeneration study of some indica rice cultivars followed by Agrobacterium-mediated transformation of highly regenerable cultivar BR-8. J. Biol. Sci. 4, 207–21110.3923/jbs.2004.207.211 - DOI
    1. Bajaj Y. P. S. (1991). “Biotechnology in rice improvement,” in Biotechnology in Agriculture and Forestry 14. Rice, ed. Bajaj Y. P. S. (Berlin: Springer Verlag; ), 1–18
    1. Bouis H. E. (2003). Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc. Nutr. Soc. 62, 403–41110.1079/PNS2003262 - DOI - PubMed
    1. Bouis H. E., Chassy B. M., Ochanda O. (2003). Genetically modified food crops and their contribution to human nutrition and food quality. Trends Food Sci. Technol. 14, 191–20910.1016/S0924-2244(03)00073-6 - DOI

LinkOut - more resources