Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Dec 10;172(2):436-43.
doi: 10.1016/j.jconrel.2013.05.034. Epub 2013 Jun 7.

The effect of lauryl capping group on protein release and degradation of poly(D,L-lactic-co-glycolic acid) particles

Affiliations

The effect of lauryl capping group on protein release and degradation of poly(D,L-lactic-co-glycolic acid) particles

N Samadi et al. J Control Release. .

Abstract

The aim of this study was to investigate the effect of a specific and frequently used end group (lauryl alcohol) on the protein release and degradation kinetics of poly(DL-lactic-co-glycolic acid) particles of different sizes. Lauryl-capped PLGA and uncapped PLGA (referred to as PLGA-capped and PLGA-COOH, respectively) particles (0.3, 1 and 20 μm) were prepared by a double emulsion solvent evaporation technique. Bovine serum albumin (BSA) was used as a model protein for release studies. During degradation (PBS buffer, pH7.4 at 37°C), a slower dry mass loss was observed for 0.3 μm particles than for particles of 1 and 20 μm. It was further shown that PLGA-capped particles showed slower mass loss likely due to its more hydrophobic nature. It was found that the ester bond hydrolysis rate was substantially slower for PLGA-capped particles and that the rate increased with particle size. Particles showed enrichment in lactic acid content (and thus a decrease in glycolic acid content) in time, and interestingly PLGA-capped particles showed also an enrichment of the lauryl alcohol content. No difference was observed in degradation kinetics between BSA loaded and blank particles. Independent of size, PLGA-COOH based particles showed, after a small burst, a sustained and nearly complete release of BSA during 60-80 days. On the other hand, particles based on PLGA-capped showed a much slower release and exhibited incomplete release, accompanied by the presence of an insoluble residue remaining even after 180 days. FTIR analysis of this residue showed that it contained both polymer and protein. Considering the polymer enrichment in lauryl alcohol, the incomplete release observed for PLGA-capped is likely attributed to interactions between the protein and the lauryl end group. In conclusion, since PLGA-COOH, in contrast to the capped derivative, shows complete degradation as well as quantitative release of an entrapped protein, this polymer is preferred for the design of protein formulations.

Keywords: Bovine serum albumin; Degradation; Microparticles; Nanoparticles; PLGA; Release.

PubMed Disclaimer