Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug;54(8):1175-80.
doi: 10.2967/jnumed.112.115014. Epub 2013 Jun 10.

PET imaging of tumor hypoxia using 18F-fluoroazomycin arabinoside in stage III-IV non-small cell lung cancer patients

Affiliations
Free article

PET imaging of tumor hypoxia using 18F-fluoroazomycin arabinoside in stage III-IV non-small cell lung cancer patients

Vikram R Bollineni et al. J Nucl Med. 2013 Aug.
Free article

Abstract

Tumor hypoxia hampers the efficacy of radiotherapy because of its increased resistance to ionizing radiation. The aim of the present study was to estimate the potential added clinical value of the specific hypoxia tracer (18)F-fluoroazomycin arabinoside ((18)F-FAZA) over commonly used (18)F-FDG in the treatment of advanced-stage non-small cell lung cancer (NSCLC).

Methods: Eleven patients with stage III or stage IV NSCLC underwent (18)F-FDG and (18)F-FAZA PET before chemoradiotherapy. The maximum standardized uptake value (SUVmax) was used to depict (18)F-FDG uptake, and the tumor-to-background (T/B) ratio and tumor fractional hypoxic volume (FHV) were used to quantify hypoxia. The spatial correlation between (18)F-FDG and (18)F-FAZA uptake values was investigated using voxel-based analysis. Partial-volume correction was applied.

Results: All 11 patients showed clear uptake of (18)F-FAZA in the primary tumor. However, different patterns of (18)F-FDG and (18)F-FAZA uptake distributions were observed and varied widely among different tumors. No significant correlation was observed between (18)F-FDG SUVmax and (18)F-FAZA T/B ratio (P = 0.055). The median FHV of 1.4 was 48.4% (range, 5.0-91.5). A significant positive correlation was found between the (18)F-FAZA T/B ratio and FHV of 1.4 (P < 0.001). There was no correlation between the lesion size and FHV or between the (18)F-FDG SUVmax and FHV. The pattern of tumoral (18)F-FDG uptake was rather homogeneous, whereas (18)F-FAZA uptake was more heterogeneous, suggesting that (18)F-FAZA identifies hypoxic areas within metabolically active areas of tumor. A significant correlation between (18)F-FDG SUVmax and lesion size (P = 0.002) was observed.

Conclusion: (18)F-FAZA PET imaging is able to detect heterogeneous distributions of hypoxic subvolumes out of homogeneous (18)F-FDG background in a clinical setting. Therefore, (18)F-FAZA might be considered a tool for guiding dose escalation to the hypoxic fraction of the tumor.

Keywords: 18F-FAZA; 18F-FDG; PET; PET/CT; oncology; respiratory; tumor hypoxia.

PubMed Disclaimer

LinkOut - more resources