TGF-initiated vascular interactions between adjacent nephrons in the rat kidney
- PMID: 2375393
- DOI: 10.1152/ajprenal.1990.259.1.F60
TGF-initiated vascular interactions between adjacent nephrons in the rat kidney
Abstract
We sought to determine whether tubuloglomerular feedback (TGF), activated from one nephron, affects other arterioles derived from the same cortical radial artery. Surface nephrons supplied by a single cortical radial artery were identified by injecting Ringer solution containing Fast Green from a narrow-gauge polyethylene catheter inserted via a lumbar artery into a renal artery. Stop-flow pressure was measured in an identified nephron from such a grouping. In one series, increasing end-proximal flow rate from 0 to 50 nl/min of synthetic tubular fluid in one member of an identified pair of nephrons reduced stop-flow pressure by 1.3 +/- 0.2 mmHg in the other member. When the nephrons were derived from different cortical radial arteries, the stop-flow pressure changed -0.2 +/- 0.1 mmHg. In another series, increasing flow in the adjacent nephron from 0 to 50 nl/min decreased stop-flow pressure 3.9 +/- 0.9 mmHg, and increasing flow in the adjacent nephron by the same amount when flow in the first nephron was 50 nl/min decreased stop-flow pressure 3.4 +/- 0.7 mmHg. These results indicate the operation of an interaction among nephrons derived from a common cortical radial artery. Such an interaction could produce a cooperative effect larger than that predicted from measured single-nephron responses when systemic arterial pressure changes.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources