Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 30:4:165.
doi: 10.3389/fpls.2013.00165. eCollection 2013.

The rhizosphere revisited: root microbiomics

Affiliations

The rhizosphere revisited: root microbiomics

Peter A H M Bakker et al. Front Plant Sci. .

Abstract

The rhizosphere was defined over 100 years ago as the zone around the root where microorganisms and processes important for plant growth and health are located. Recent studies show that the diversity of microorganisms associated with the root system is enormous. This rhizosphere microbiome extends the functional repertoire of the plant beyond imagination. The rhizosphere microbiome of Arabidopsis thaliana is currently being studied for the obvious reason that it allows the use of the extensive toolbox that comes with this model plant. Deciphering plant traits that drive selection and activities of the microbiome is now a major challenge in which Arabidopsis will undoubtedly be a major research object. Here we review recent microbiome studies and discuss future research directions and applicability of the generated knowledge.

Keywords: Arabidopsis thaliana; Pseudomonas spp; extended phenotype; microbial communities; plant roots.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
(A) Numbers (log cfu g-1) of culturable aerobic bacteria and Pseudomonas spp. in bulk (black bars) and rhizosphere soil of Arabidopsis (gray bars) and Tobacco (white bars). Plants were grown for 7 weeks on a potting soil–sand mixture or a clay soil, which were either untreated or autoclaved twice heat treatment (HT) before planting. Different letters indicate significant differences within each soil type. (B) Denaturing gradient gel electrophoresis (DGGE) profile showing the Pseudomonas spp. community structure from bulk soils (top gel: potting soil; bottom gel: clay soil), and the rhizospheres of Arabidopsis and tobacco grown on these soils. M, reference marker; lanes 1 and 10, Arabidopsis rhizosphere grown on non-autoclaved soil; lanes 2 and 6, autoclaved bulk soil; lanes 3 and 9, tobacco rhizosphere grown on autoclaved soil; lanes 4 and 12, non-autoclaved bulk soil; lanes 5 and 7, tobacco rhizosphere grown on non-autoclaved soil; lanes 8 and 11, Arabidopsis rhizosphere grown on non-autoclaved soil. (C) Ordination biplot generated by redundancy analysis (RDA) of Pseudomonas-specific DGGE fingerprints of bulk soil and the rhizospheres of Arabidopsis and tobacco grown on (a) potting soil–sand mixture; (b) autoclaved potting soil–sand mixture; (c) clay soil; (d) autoclaved clay soil. Open triangles, bulk; open circles, Arabidopsis rhizosphere; open squares, tobacco rhizosphere; gray triangles, centroid position of variables.

References

    1. Amann R. I., Ludwig W., Schleifer K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59 143–169 - PMC - PubMed
    1. Badri D. V., Chaparro J. M., Manter D. K., Martinoia E., Vivanco J. M. (2012). Influence of ATP-binding cassette transporters in root exudation of phytoalexins, signals, and in disease resistance. Front. Plant Sci. 3:149 10.3389/fpls.2012.00149 - DOI - PMC - PubMed
    1. Badri D. V., Chaparro J. H., Zhang R., Shen Q., Vivanco J. M. (2013). Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J. Biol. Chem. 288 4502–4512 10.1074/jbc.M112.433300 - DOI - PMC - PubMed
    1. Bais H. P., Weir T. L., Perry L. G., Gilroy S., Vivanco J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57 233–26610.1146/annurev.arplant.57.032905.105159 - DOI - PubMed
    1. Barret M., Frey-Klett P., Guillerm-Erckelboudt A. V., Boutin M., Guernec G., Sarniguet A. (2009). Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Mol. Plant Microbe Interact. 22 1611–1623 10.1094/MPMI-22-12-1611 - DOI - PubMed

LinkOut - more resources