Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May;5(2):110-7.
doi: 10.4047/jap.2013.5.2.110. Epub 2013 May 30.

The effect of acrylamide incorporation on the thermal and physical properties of denture resins

Affiliations

The effect of acrylamide incorporation on the thermal and physical properties of denture resins

Elif Aydogan Ayaz et al. J Adv Prosthodont. 2013 May.

Abstract

Purpose: Polymethyl methacrylate (PMMA) is the most commonly used denture base material despite typically low in strength. The purpose of this study was to improve the physical properties of the PMMA based denture base resins (QC-20, Dentsply Ltd., Addlestone, UK; Stellon, AD International Ltd, Dentsply, Switzerland; Acron MC; GC Lab Technologies Inc., Alsip, Japan) by copolymerization mechanism.

Materials and methods: Control group specimens were prepared according to the manufacturer recommendations. In the copolymer groups; resins were prepared with 5%, 10%, 15% and 20% acrylamide (AAm) (Merck, Hohenbrunn, Germany) content according to the moleculer weight ratio, respectively. Chemical structure was characterized by a Bruker Vertex-70 Fourier transform infrared spectroscopy (FTIR) (Bruker Optics Inc., Ettlingen, Germany). Hardness was determined using an universal hardness tester (Struers Duramin, Struers A/S, Ballerup, Denmark) equipped with a Vickers diamond penetrator. The glass transition temperature (Tg) of control and copolymers were evaluated by Perkin Elmer Diamond DSC (Perkin Elmer, Massachusetts,USA). Statistical analyses were carried out using the statistical package SPSS for Windows, version 15.0 (SPSS, Chicago, IL, USA). The results were tested regarding the normality of distribution with the Shapiro Wilk test. Data were analyzed using ANOVA with post-hoc Tukey test (P<.01).

Results: The copolymer synthesis was confirmed by FTIR spectroscopy. Glass transition temperature of the copolymer groups were higher than the control groups of the resins. The 10%, 15% and 20% copolymer groups of Stellon presented significantly higher than the control group in terms of hardness. 15% and 20% copolymer groups of Acron MC showed significantly higher hardness values when compared to the control group of the resin. Acrylamide addition did not affect the hardness of the QC-20 resin significantly.

Conclusion: Within the limitation of this study, it can be concluded that copolymerization of PMMA with AAm increased the hardness value and glass transition temperature of PMMA denture base resins.

Keywords: Acrylamide; Acrylic resin; Copolymerization; DSC; FTIR; Hardness.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
FTIR spectra of QC-20 control and QC-20-AAm copolymers. 'a' and 'c' show the C-H, 'b' shows the C=O and 'd' shows the O-C-C bonds of MMA which are observed in both control and copolymer of the resins. The line symbol indicates the NH2 peaks of acrylamide in the copolymer groups.
Fig. 2
Fig. 2
FTIR spectra of Stellon control and Stellon-AAm copolymers. 'a' and 'c' show the C-H, 'b' shows the C=O and 'd' shows the O-C-C bonds of MMA which are observed in both control and copolymer of the resins. The line symbol indicates the NH2 peaks of acrylamide in the copolymer groups.
Fig. 3
Fig. 3
FTIR spectra of Acron MC control and Acron MC-AAm copolymers. 'a' and 'c' show the C-H, 'b' shows the C=O and 'd' shows the O-C-C bonds of MMA which are observed in both control and copolymer of the resins. The line symbol indicates the NH2 peaks of acrylamide in the copolymer groups.
Fig. 4
Fig. 4
DSC thermogram of QC, Stellon and Acron MC control and 15% copolymer groups.

References

    1. Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. The global burden of oral diseases and risks to oral health. Bull World Health Organ. 2005;83:661–669. - PMC - PubMed
    1. Tang AT, Li J, Ekstrand J, Liu Y. Cytotoxicity tests of in situ polymerized resins: methodological comparisons and introduction of a tissue culture insert as a testing device. J Biomed Mater Res. 1999;45:214–222. - PubMed
    1. Rached RN, Del-Bel Cury AA. Heat-cured acrylic resin repaired with microwave-cured one: bond strength and surface texture. J Oral Rehabil. 2001;28:370–375. - PubMed
    1. Wolfaardt JF, Cleaton-Jones P, Fatti P. The occurrence of porosity in a heat-cured poly (methyl methacrylate) denture base resin. J Prosthet Dent. 1986;55:393–400. - PubMed
    1. Honorez P, Catalan A, Angnes U, Grimonster J. The effect of three processing cycles on some physical and chemical properties of a heat-cured acrylic resin. J Prosthet Dent. 1989;61:510–517. - PubMed