Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Sep;34(27):6454-63.
doi: 10.1016/j.biomaterials.2013.05.017. Epub 2013 Jun 5.

Cancer cell-specific photoactivity of pheophorbide a-glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice

Affiliations

Cancer cell-specific photoactivity of pheophorbide a-glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice

In-hyeok Oh et al. Biomaterials. 2013 Sep.

Abstract

We designed a cancer-cell specific photosensitizer nano-carrier by synthesizing pheophorbide a (PheoA) conjugated glycol chitosan (GC) with reducible disulfide bonds (PheoA-ss-GC). The amphiphilic PheoA-ss-GC conjugates self-assembled in aqueous condition to form core-shell structured nanoparticles (PheoA-ss-CNPs) with good colloidal stability and switchable photoactivity. The photoactivity of PheoA-ss-CNPs in an aqueous environment was greatly suppressed by the self-quenching effect, which enabled the PheoA-ss-CNPs to remain photo-inactive and in a quenched state. However, after the cancer cell-specific uptake, the nanoparticular structure instantaneously dissociated by reductive cleavage of the disulfide linkers, followed by an efficient dequenching process. Compared to non-reducible PheoA-conjugated GC-NPs with stable amide linkages (PheoA-CNPs), PheoA-ss-CNPs rapidly restored their photoactivity in response to intracellular reductive conditions, thus presenting higher cytotoxicity with light treatment. In addition, the PheoA-ss-CNPs presented prolonged blood circulation in vivo compared to free PheoA, demonstrating enhanced tumor specific targeting behavior through the enhanced permeation and retention (EPR) effect. The enhanced tumor accumulation of PheoA-ss-CNPs enabled tumor therapeutic efficacy that was more efficient than free PheoA in tumor-bearing mice. Based on the enhanced intracellular release for cytosolic high dose and switchable photoactivity mechanism for reduced side effects, these results suggest that PheoA-ss-CNPs have good potential for photodynamic therapy (PDT) in cancer treatment.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources