Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jul:28 Suppl 1:S52-7.
doi: 10.1016/j.yebeh.2012.06.033.

The quest for juvenile myoclonic epilepsy genes

Affiliations
Review

The quest for juvenile myoclonic epilepsy genes

Antonio V Delgado-Escueta et al. Epilepsy Behav. 2013 Jul.

Abstract

Introduced into a specific population, a juvenile myoclonic epilepsy (JME) mutation generates linkage disequilibrium (LD). Linkage disequilibrium is strongest when the JME mutation is of recent origin, still "hitchhiking" alleles surrounding it, as a haplotype into the next thousands of generations. Recombinations decay LD over tens of thousands of generations causing JME alleles to produce smaller genetic displacements, requiring other genes or environment to produce an epilepsy phenotype. Family-based linkage analysis captures rare epilepsy alleles and their "hitchhiking" haplotypes, transmitted as Mendelian traits, supporting the common disease/multiple rare allele model. Genome-wide association studies identify JME alleles whose linkage disequilibrium has decayed through thousands of generations and are sorting out the common disease/common allele versus rare allele models. Five Mendelian JME genes have been identified, namely, CACNB4, CASR, GABRa1, GABRD, and Myoclonin1/EFHC1. Three SNP alleles in BRD2, Cx-36, and ME2 and microdeletions in 15q13.3, 15q11.2, and 16p13.11 also contribute risk to JME.

PubMed Disclaimer

LinkOut - more resources