Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 May 30;393(1):253-66.
doi: 10.1016/0005-2795(75)90238-x.

The role of tryptophan residues and hydrophobic interaction in the binding of riboflavin in egg-yolk flavoprotein

The role of tryptophan residues and hydrophobic interaction in the binding of riboflavin in egg-yolk flavoprotein

J Steczko et al. Biochim Biophys Acta. .

Abstract

Egg-yolk flavoprotein has 7.2 tryptophan residues exposed, while the apoprotein shows an apparent exposure of 80 percent of these (5.7 residues) with dimethylsulphoxide as the perturbant. In the apoprotein at pH 6.9 only 4 groups are perturbed to ethylene glycol, 3.2 to glycerol and 1.4 to sucrose. Diminishing estimates of exposure obtained with increasing molecular diameter of the perturbant suggests that part of indole chromophores of apoprotein are located in "crevices" of the protein molecule. The apoprotein was treated with 2-hydroxy-5-nitrobenzyl bromide, H2O2 and N-bromosuccinimide under conditions designed to accomplish modification of tryptophan residues. Five to six of the eight tryptophans present in the protein were modified. Under these conditions the apoprotein completely looses its capacity for binding riboflavin and the fluorescent intensity of the protein at 360 nm is quenched at the same time to about 80 percent of its initial value. The presence of nonpolar amino acid residues on the surface of the apoprotein suggested the importance of hydrophobic interactions as the dominant factor controlling the binding of riboflavin. The hydrophobic probes Indocyanine green and 4-benzoylamide-4-aminostilbene-2,2-disulphonic acid bound to the apoprotein giving equimolar complexes with dissocation constants, KD 6.5-10(-7) M and 1.8-10(-6) M, respectively, Addition of an equimolar amount of riboflavin quantitatively displaced these dyes from their complexes with apoprotein as shown by spectrophotometric and spectrofluorometric studies.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources