Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jul;8(7):1041-56.
doi: 10.1002/cmdc.201300078. Epub 2013 Jun 11.

Alzheimer's disease: identification and development of β-secretase (BACE-1) binding fragments and inhibitors by dynamic ligation screening (DLS)

Affiliations

Alzheimer's disease: identification and development of β-secretase (BACE-1) binding fragments and inhibitors by dynamic ligation screening (DLS)

María Isabel Fernández-Bachiller et al. ChemMedChem. 2013 Jul.

Abstract

The application of dynamic ligation screening (DLS), a methodology for fragment-based drug discovery (FBDD), to the aspartic protease β-secretase (BACE-1) is reported. For this purpose, three new fluorescence resonance energy transfer (FRET) substrates were designed and synthesized. Their kinetic parameters (Vmax , KM , and kcat ) were determined and compared with a commercial substrate. Secondly, a peptide aldehyde was designed as a chemically reactive inhibitor (CRI) based on the Swedish mutation substrate sequence. Incubation of this CRI with the protease, a FRET substrate, and one amine per well taken from an amine library, which was assembled by a maximum common substructure (MCS) approach, revealed the fragment 3-(3-aminophenyl)-2H-chromen-2-one (1) to be a competitive BACE-1 inhibitor that enhanced the activity of the CRI. Irreversibly formed fragment combination products of 1 with the initial peptide sequence were active and confirmed the targeting of the active site through the ethane-1,2-diamine isostere. Finally, structure-assisted combination of fragment 1 with secondary fragments that target the S1 site in hit optimization yielded novel, entirely fragment-based BACE-1 inhibitors with up to 30-fold improved binding affinity. Interactions with the protein were explained by molecular modeling studies, which indicate that the new fragment combinations interact with the catalytic aspartic acid dyad, as well as with the adjacent binding sites required for potency.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources