Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1975;57(2):131-8.
doi: 10.1016/s0300-9084(75)80162-3.

Chicken fumarase. II. Kinetic studies

Comparative Study

Chicken fumarase. II. Kinetic studies

C Reyns et al. Biochimie. 1975.

Abstract

The catalysis of the hydration of fumarate and deshydration of L - malate by chicken fumarase was measured spectrophotometrically over a range of substrate concentrations from 4 times 10(-3) M to 8 times 10(-5) M for fumarate and from 8 times 10(-2) M to 10(-3) M for L - malate. For the forward and reverse reactions, linear Lineweaver and Burk plots were obtained. The Michaelis constants and the maximum initial velocities for both substrates were determined and the Haldane relation was found to be obeyed. The effect of pH on activity was investigated over a pH range from 5.5 to 9.0 and the data indicate the presence, in the active site, of two ionizable groups, one in the acidic form and one in the basic form. The values of the ionization constants, determined for the enzyme - substrate complexes, agree closely with the ones obtained for the porcine enzyme. The mode of action of twenty-four structural analogs on the initial velocity of the dehydration of L-malate, by chicken fumarase was examined. From these studies, two regions positively charged appear necessary for the effective binding of the carboxylates of the substrates and competitive inhibitors to the active center. Moreover, the data suggest the presence of an additional group, in the catalytic site of chicken fumarase, that stabilizes the carbon-carbon double bond common to fumarate and its structural analogs. Finally, from the comparison of the kinetic properties of the chicken and pig fumarases, it may be concluded that the catalytic mechanism of the homologous enzymes are very similar, if not identical.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources