Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun 6;8(6):e65175.
doi: 10.1371/journal.pone.0065175. Print 2013.

Associations between white matter hyperintensities and β amyloid on integrity of projection, association, and limbic fiber tracts measured with diffusion tensor MRI

Affiliations

Associations between white matter hyperintensities and β amyloid on integrity of projection, association, and limbic fiber tracts measured with diffusion tensor MRI

Linda L Chao et al. PLoS One. .

Abstract

The goal of this study was to assess the relationship between Aβ deposition and white matter pathology (i.e., white matter hyperintensities, WMH) on microstructural integrity of the white matter. Fifty-seven participants (mean age: 78±7 years) from an ongoing multi-site research program who spanned the spectrum of normal to mild cognitive impairment (Clinical dementia rating 0-0.5) and low to high risk factors for arteriosclerosis and WMH pathology (defined as WMH volume >0.5% total intracranial volume) were assessed with positron emission tomography (PET) with Pittsburg compound B (PiB) and magnetic resonance and diffusion tensor imaging (DTI). Multivariate analysis of covariance were used to investigate the relationship between Aβ deposition and WMH pathology on fractional anisotropy (FA) from 9 tracts of interest (i.e., corona radiata, internal capsule, cingulum, parahippocampal white matter, corpus callosum, superior longitudinal, superior and inferior front-occipital fasciculi, and fornix). WMH pathology was associated with reduced FA in projection (i.e., internal capsule and corona radiate) and association (i.e., superior longitudinal, superior and inferior fronto-occipital fasciculi) fiber tracts. Aβ deposition (i.e., PiB positivity) was associated with reduced FA in the fornix and splenium of the corpus callosum. There were interactions between PiB and WMH pathology in the internal capsule and parahippocampal white matter, where Aβ deposition reduced FA more among subjects with WMH pathology than those without. However, accounting for apoE ε4 genotype rendered these interactions insignificant. Although this finding suggests that apoE4 may increase amyloid deposition, both in the parenchyma (resulting in PiB positivity) and in blood vessels (resulting in amyloid angiopathy and WMH pathology), and that these two factors together may be associated with compromised white matter microstructural integrity in multiple brain regions, additional studies with a longitudinal design will be necessary to resolve this issue.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: LC is a PLOS ONE Editorial Board member. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1
Figure 1. Examples of the (A) projection fiber ROIs: corona radiata in magenta; internal capsule in green, (B) limbic fiber ROIs: cingulate gyrus in green, parahippocampal white matter in magenta; fornix in red, (C) association fiber ROIs: superior longitudinal fasciculus in red; superior fronto-occipital fasciculus in green; inferior fronto-occipital fasciculus in purple, and (D) corpus callosum ROIs: genu in purple; body in green; splenium in red.
ROIs are overlaid an intensity-averaged FA template generated from 23 Aging Brain research participants with no infarct and WMH <0.5% intracranial volume.

Similar articles

Cited by

References

    1. Neuropathology Group of the Medical Research Council Cognitive Function and Aging Study (MRC CFAS) (2001) Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet 357: 169–175. - PubMed
    1. Breteler MM, van Swieten JC, Bots ML, Grobbee DE, Claus JJ, et al. (1994) Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam Study. Neurology 44: 1246–1252. - PubMed
    1. de Leeuw FE, de Groot JC, Oudkerk M, Witteman JC, Hofman A, et al. (200) Aortic atherosclerosis at middle age predicts cerebral white matter lesions in the elderly. Stroke 31: 425–429. - PubMed
    1. de Leeuw FE, de Groot JC, Oudkerk M, Witteman JC, Hofman A, et al. (2002) Hypertension and cerebral white matter lesions in a prospective cohort study. Brain 125: 765–772. - PubMed
    1. Chen YW, Gurol ME, Rosand J, Viswanathan A, Rakich SM, et al. (2006) Progression of white matter lesions and hemorrhages in cerebral amyloid angiopathy. Neurology 67: 83–87. - PMC - PubMed

Publication types

MeSH terms