Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2013 Jun 10;8(6):e65942.
doi: 10.1371/journal.pone.0065942. Print 2013.

Genome-wide genetic diversity and differentially selected regions among Suffolk, Rambouillet, Columbia, Polypay, and Targhee sheep

Affiliations
Comparative Study

Genome-wide genetic diversity and differentially selected regions among Suffolk, Rambouillet, Columbia, Polypay, and Targhee sheep

Lifan Zhang et al. PLoS One. .

Abstract

Sheep are among the major economically important livestock species worldwide because the animals produce milk, wool, skin, and meat. In the present study, the Illumina OvineSNP50 BeadChip was used to investigate genetic diversity and genome selection among Suffolk, Rambouillet, Columbia, Polypay, and Targhee sheep breeds from the United States. After quality-control filtering of SNPs (single nucleotide polymorphisms), we used 48,026 SNPs, including 46,850 SNPs on autosomes that were in Hardy-Weinberg equilibrium and 1,176 SNPs on chromosome × for analysis. Phylogenetic analysis based on all 46,850 SNPs clearly separated Suffolk from Rambouillet, Columbia, Polypay, and Targhee, which was not surprising as Rambouillet contributed to the synthesis of the later three breeds. Based on pair-wise estimates of F(ST), significant genetic differentiation appeared between Suffolk and Rambouillet (F(ST) = 0.1621), while Rambouillet and Targhee had the closest relationship (F(ST) = 0.0681). A scan of the genome revealed 45 and 41 differentially selected regions (DSRs) between Suffolk and Rambouillet and among Rambouillet-related breed populations, respectively. Our data indicated that regions 13 and 24 between Suffolk and Rambouillet might be good candidates for evaluating breed differences. Furthermore, ovine genome v3.1 assembly was used as reference to link functionally known homologous genes to economically important traits covered by these differentially selected regions. In brief, our present study provides a comprehensive genome-wide view on within- and between-breed genetic differentiation, biodiversity, and evolution among Suffolk, Rambouillet, Columbia, Polypay, and Targhee sheep breeds. These results may provide new guidance for the synthesis of new breeds with different breeding objectives.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Neighbor-Joining tree relating the 94 individuals.
The tree was constructed using allele sharing distances averaged over 46,850 SNPs. Different colors in labels represent the origin of breed individuals. S, R, C, P, and T represent Suffolk, Rambouillet, Columbia, Polypay, and Targhee sheep breeds, respectively. The meanings of S, R, C, P, and T are same in the following figures.
Figure 2
Figure 2. Multidimensional scaling plots for the genetic differentiations between Suffolk and Rambouillet (left) and among four Rambouillet-related breeds (right).
F ST represent the pair-wise F ST between any two sheep breeds.
Figure 3
Figure 3. Genome-wide distribution of F ST between Suffolk and Rambouillet.
Based on OvineSNP50 BeadChip position, smoothed F ST show that strong selection signals are observed in regions 13 and 24. S-R represents Suffolk-Rambouillet, while R-C-P-T means Rambouillet-Columbia-Polypay-Targhee.
Figure 4
Figure 4. Genome-wide distribution of F ST among Rambouillet, Columbia, Polypay and Targhee.
R-C-P-T means Rambouillet-Columbia-Polypay-Targhee.

Similar articles

Cited by

References

    1. Dalrymple BP, Kirkness EF, Nefedov M, McWilliam S, Ratnakumar A, et al. (2007) Using comparative genomics to reorder the human genome sequence into a virtual sheep genome. Genome Biol 8: R152. - PMC - PubMed
    1. Goldammer T, Di Meo GP, Lühken G, Drögemüller C, Wu CH, et al. (2009) Molecular cytogenetics and gene mapping in sheep (Ovis aries, 2n = 54). Cytogenet Genome Res126: 63–76. - PubMed
    1. International Sheep Genomics Consortium, Archibald AL, Cockett NE, Dalrymple BP, Faraut T, et al. (2010) The sheep genome reference sequence: a work in progress. Anim Genet 41: 449–453. - PubMed
    1. Becker D, Tetens J, Brunner A, Bürstel D, Ganter M, et al. (2010) Microphthalmia in Texel sheep is associated with a missense mutation in the paired-like homeodomain 3 (PITX3) gene. PLoS One 5: e8689. - PMC - PubMed
    1. Zhao X, Dittmer KE, Blair HT, Thompson KG, Rothschild MF, et al. (2011) A novel nonsense mutation in the DMP1 gene identified by a genome-wide association study is responsible for inherited rickets in Corriedale sheep. PLoS One 6: e21739. - PMC - PubMed

Publication types

LinkOut - more resources