Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013:1022:73-97.
doi: 10.1007/978-1-62703-465-4_7.

A practical approach to reconstruct evolutionary history of animal sialyltransferases and gain insights into the sequence-function relationships of Golgi-glycosyltransferases

Affiliations

A practical approach to reconstruct evolutionary history of animal sialyltransferases and gain insights into the sequence-function relationships of Golgi-glycosyltransferases

Daniel Petit et al. Methods Mol Biol. 2013.

Abstract

In higher vertebrates, sialyltransferases catalyze the transfer of sialic acid residues, either Neu5Ac or Neu5Gc or KDN from an activated sugar donor, which is mainly CMP-Neu5Ac in human tissues, to the hydroxyl group of another saccharide acceptor. In the human genome, 20 unique genes have been described that encode enzymes with remarkable specificity with regards to their acceptor substrates and the glycosidic linkage formed. A systematic search of sialyltransferase-related sequences in genome and EST databases and the use of bioinformatic tools enabled us to investigate the evolutionary history of animal sialyltransferases and propose original models of divergent evolution of animal sialyltransferases. In this chapter, we extend our phylogenetic studies to the comparative analysis of the environment of sialyltransferase gene loci (synteny and paralogy studies), the variations of tissue expression of these genes and the analysis of amino-acid position evolution after gene duplications, in order to assess their sequence-function relationships and the molecular basis underlying their functional divergence.

PubMed Disclaimer

Publication types

LinkOut - more resources