Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct;1(5):370-6.
doi: 10.1111/j.1758-2229.2009.00074.x. Epub 2009 Sep 23.

Substantial (13) C/(12) C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro

Affiliations

Substantial (13) C/(12) C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro

Thomas Holler et al. Environ Microbiol Rep. 2009 Oct.

Abstract

The anaerobic oxidation of methane (AOM) by methanotrophic archaea and sulfate-reducing bacteria is the major sink of methane formed in marine sediments. The study of AOM as well as of methanogenesis in different habitats is essentially connected with the in situ analysis of stable isotope ((13) C/(12) C, D/H) signatures (δ-values). For their kinetic interpretation, experimental (cultivation-based) isotope fractionation factors (α-values) are richly available in the case of methanogenesis, but are scarce in the case of AOM. Here we used batch enrichment cultures with high AOM activity and without background methanogenesis from detrital remnants to determine (13) C/(12) C and D/H fractionation factors. The enrichment cultures which originated from three marine habitats (Hydrate Ridge, NE Pacific; Amon Mud Volcano, Mediterranean Sea; NW shelf, Black Sea) were dominated by archaeal phylotypes of anaerobic methanotrophs (ANME-2 clade). Isotope fractionation factors calculated from the isotope signatures as a function of the residual proportion of methane were 1.012-1.039 for (13) CH4 /(12) CH4 and 1.109-1.315 for CDH3 /CH4 . The present values from in vitro experiments were significantly higher than values previously estimated from isotope signature distributions in marine sediment porewater, in agreement with the overlap of other processes with AOM in the natural habitat.

PubMed Disclaimer

LinkOut - more resources