Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2013 Jun 13;4(3):61.
doi: 10.1186/scrt210.

Human neural stem cell transplantation in spinal cord injury models: how far from clinical application?

Comment

Human neural stem cell transplantation in spinal cord injury models: how far from clinical application?

Isaura Tavares. Stem Cell Res Ther. .

Abstract

Injuries of the spinal cord trigger local healing but hardly restore normal function. Spinal cord injury (SCI) has been deeply studied to develop strategies for functional recovery. The study by van Gorp and colleagues uses a rat model of acute SCI to characterize the effects of intraspinal grafting of human fetal spinal cord-derived neural stem cells (HSSCs). Among the range of results obtained, several positive outcomes related to a GABA-mediated inhibition were achieved. Their interesting article is a clear step forward in elucidating the neurobiology of SCI. Some issues to consider are related to the efficacy of the cell therapy in chronic spinal lesions and to pain responses, since the latter is a common complaint of people with SCI. Furthermore, the GABA-mediated hypothesis of recovery of function upon HSSC transplant needs to be fully tested by interfering with GABA receptors and analyzing neurobiological mechanisms that may invert the inhibitory role of GABA. The future challenge for SCI work will be the translation of knowledge acquired in basic research into clinically applicable strategies. The study by van Gorp and colleagues is an important contribution to that future.

PubMed Disclaimer

Comment on

Similar articles

Cited by

References

    1. van Gorp S, Leerink M, Kakinnohana O, Platoshyn O, Santucci C, Joosten E, Hruska-Plochani M, Goldbergi D, Marsala S, Johe K, Marsala M. Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation. Stem Cell Res Ther. in press. - PMC - PubMed
    1. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416:636–640. doi: 10.1038/416636a. - DOI - PubMed
    1. Baastrup C, Maersk-Moller CC, Nyengaard JR, Jensen TS, Finnerup NB. Spinal-, brainstem- and cerebrally mediated responses at- and below-level of a spinal cord contusion in rats: evaluation of pain-like behavior. Pain. 2010;151:670–679. doi: 10.1016/j.pain.2010.08.024. - DOI - PubMed
    1. Whitt JL, Masri R, Pulimood NS, Keller A. Pathological activity in mediodorsal thalamus of rats with spinal cord injury pain. J Neurosci. 2013;33:3915–3926. doi: 10.1523/JNEUROSCI.2639-12.2013. - DOI - PMC - PubMed
    1. Mogil JS, Davis KD, Derbyshire SW. The necessity of animal models in pain research. Pain. 2010;151:12–17. doi: 10.1016/j.pain.2010.07.015. - DOI - PubMed