Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug 8;122(6):863-71.
doi: 10.1182/blood-2013-03-490565. Epub 2013 Jun 14.

Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma

Affiliations

Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma

Gerald P Linette et al. Blood. .

Abstract

An obstacle to cancer immunotherapy has been that the affinity of T-cell receptors (TCRs) for antigens expressed in tumors is generally low. We initiated clinical testing of engineered T cells expressing an affinity-enhanced TCR against HLA-A*01-restricted MAGE-A3. Open-label protocols to test the TCRs for patients with myeloma and melanoma were initiated. The first two treated patients developed cardiogenic shock and died within a few days of T-cell infusion, events not predicted by preclinical studies of the high-affinity TCRs. Gross findings at autopsy revealed severe myocardial damage, and histopathological analysis revealed T-cell infiltration. No MAGE-A3 expression was detected in heart autopsy tissues. Robust proliferation of the engineered T cells in vivo was documented in both patients. A beating cardiomyocyte culture generated from induced pluripotent stem cells triggered T-cell killing, which was due to recognition of an unrelated peptide derived from the striated muscle-specific protein titin. These patients demonstrate that TCR-engineered T cells can have serious and not readily predictable off-target and organ-specific toxicities and highlight the need for improved methods to define the specificity of engineered TCRs.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Timeline of events after infusion of engineered T cells. ΔMS, altered mental status; Afib, atrial fibrillation; ASCT, autologous stem cell transplant; Cath laboratory, cardiac catheterization laboratory; CP, chest pain; CRRT, continuous renal replacement therapy; CXR, chest x-ray; ED, emergency department; EF, ejection fraction; HR, heart rate; IABP, intra-aortic balloon pump; ICU, intensive care unit (transfer); LLL, left lower lobe; MSOF, multisystem organ failure; PNA, pneumonia; RA, room air; SBP, systolic blood pressure; STE, ST elevations on electrocardiogram; T, temperature; Trop, troponin; TTE, transthoracic echocardiogram; Wnl, within normal limits. 100% on RA, 100% oxygen saturation on room air by pulse oximetry.
Figure 2
Figure 2
Peripheral blood cytokines elevated in both patients. Peripheral blood samples were collected in both patients at predetermined time points; specific levels of 30 cytokines were quantified and compared with baseline (preinfusion) samples. Only cytokines that were elevated at least 10-fold over baseline at any time point are shown. Case 2 received granulocyte colony-stimulating factor (G-CSF) as part of standard-of-care therapy following the autologous stem cell transplant. Baseline (preinfusion) serum values of the 9 analytes shown in Case 1 were IL-6, 12.5 pg/mL; IL-15, 30.8 pg/mL; IL-5, 1.82 pg/mL; IFN-γ, 1.68 pg/mL; IL-1Rα, 245 pg/mL; interferon-inducible protein 10 (IP-10), 99.9 pg/mL; IL-2R, 322 pg/mL; monokine induced by gamma interferon (MIG/CXCL9), 30.7 pg/mL; and IL-8, 11.6 pg/mL. Baseline levels of all cytokines analyzed in the serum in Case 2 are detailed in the legend for Figure 4B. FGF, fibroblast growth factor; GM-CSF, granulocyte macrophage CSF; HGF, hepatocyte growth factor; MCP-1, monocyte chemoattractant protein 1; VEGF, vascular endothelial growth factor.
Figure 3
Figure 3
Fate of the infused engineered T cells. (A) Expansion of the engineered T cells over time in both patients. Left y-axis shows cell count per microliter of blood (total white blood cell [WBC] count in red; engineered [marked] cells in green). Right y-axis shows the number of copies of DNA used in the engineered T cells as a function of total genomic DNA in peripheral blood mononuclear cells (PBMCs) over time. (B). Distribution of engineered T cells in tissue samples obtained post mortem in both patients. qPCR for vector sequences was performed from total genomic DNA obtained from flash-frozen tissues. Note different scale on y-axis for Case 1 and Case 2.
Figure 4
Figure 4
Analysis of cardiac-specific toxicity. (A) Pathologic and immunohistochemical analysis of myocardium from both patients. Hematoxylin and eosin (H&E) stained sections of myocardium shown at two magnifications for each patient (top panels), demonstrating lymphocytic infiltrate and diffuse myocyte necrosis. Immunohistochemical (IHC) staining with anti-CD3 (lower panels) demonstrates that lymphocytic infiltrates are T cells, shown at two magnifications. (B) Cytokines in the peripheral blood and the pericardial fluid in Case 2 obtained post mortem show evidence of T-cell activation. Thirty cytokines were assayed; each cytokine level shown is normalized to the concentration of that cytokine in a peripheral blood sample obtained at baseline. The patient was given injections of filgrastim (G-CSF) as per standard of care post-ASCT. Baseline levels of cytokines in blood were VEGF, 1.73 pg/mL; IL-1β, 0.5 pg/mL; G-CSF, 10.51 pg/mL; epidermal growth factor (EGF), 23.13 pg/mL; IL-10, 2.54 pg/mL; HGF, 357.83 pg/mL; FGF-basic, 4.45 pg/mL; IFN-α, 70.76 pg/mL; IL-6, 3.42 pg/mL; IL-12, 93.34 pg/mL; regulated upon activation, normal T-cell expressed and secreted (RANTES), 12 717 pg/mL; eotaxin, 76.1 pg/mL; IL-13, 0.53 pg/mL; IL-15, 59.94 pg/mL; IL-17, 0.16 pg/mL; macrophage inflammatory protein 1 alpha (MIP-1α/CCL3), 14.85 pg/mL; GM-CSF, 0.77 pg/mL; MIP-1β, 36.44 pg/mL; MCP-1, 953 pg/mL; IL-5, 0.34 pg/mL; IFN-γ, 2.49 pg/mL; tumor necrosis factor alpha (TNF-α), 1.26 pg/mL; IL-1Rα, 37.66 pg/mL; IL-2, 0.56 pg/mL; IL-7, 15.36 pg/mL; IP-10, 23.14 pg/mL; IL-2R, 205.81 pg/mL; MIg, 10.51 pg/mL; IL-4, 9.91 pg/mL; and IL-8, 10.68 pg/mL.
Figure 5
Figure 5
Elucidation of mechanism of clinical cardiac toxicity. (A) Analysis for expression of the correctly paired MAGE-A3–engineered TCR (MAGE dextramer staining, y-axis) of input (untransduced) T cells, transduced T-cell product, and T cells recovered from PBMCs in both patients at time of death. The x-axis shows staining for specific TCR-β chain (Vβ5.1) used by the engineered MAGE-A3 TCRs. Numbers shown in each quadrant indicate percentages of the gated CD3+ cells. Cell populations that stain only for Vβ5.1 but not dextramer are the sum of (1) endogenous TCR that uses that β chain (ie, population shown in input T cells) and (2) mispaired MAGE-A3–engineered TCR. No expansion of T cells with mispaired TCRs was detected after infusion in the patients. (B) A sample of the T-cell product infused into Case 2, along with fresh MAGE-A3a3a–transduced T cells and untransduced T cells, was tested for IFN-γ production by ELISPOT when cocultured with a large panel of HLA-A1+ cell lines, including one that was MAGE-A3+ (EJM) as a positive control. Bars indicate mean ± standard error of the mean (SEM) of 3 replicates. (C) Activation and cytokine production of MAGE-engineered T cells incubated in vitro with HLA-A*01+, titin-positive, MAGE-A3 beating cardiac myocyte cells derived from iPSC-CM or iCells. The EJM plasmacytoma cell line expresses HLA-A*01 and MAGE-A3 (positive control), and the colo205 cancer cell line expresses HLA-A*01 but not MAGE-A3 or titin (negative control). Controls for the effector cells are nontransduced (ntd) T cells, or no T cells (targets only). Bars indicate mean ± SEM of 3 replicates. *P < .0001 by Student t test.

Comment in

References

    1. Schumacher TN. T-cell-receptor gene therapy. Nat Rev Immunol. 2002;2(7):512–519. - PubMed
    1. Varela-Rohena A, Molloy PE, Dunn SM, et al. Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nat Med. 2008;14(12):1390–1395. [Epub 2008 Nov 1399] - PMC - PubMed
    1. Robbins PF, Morgan RA, Feldman SA, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29(7):917–924. - PMC - PubMed
    1. Purbhoo MA, Sutton DH, Brewer JE, et al. Quantifying and imaging NY-ESO-1/LAGE-1-derived epitopes on tumor cells using high affinity T cell receptors. J Immunol. 2006;176(12):7308–7316. - PubMed
    1. Cameron BJ, Gerry AB, Dukes J, et al. Identification of titin as an alternative specificity for engineered T cells expressing an enhanced affinity MAGE A3 TCR. Sci Transl Med. In press.

MeSH terms