Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Feb;31(2):140-52.
doi: 10.1177/0748233713491800. Epub 2013 Jun 14.

Licorice treatment prevents oxidative stress, restores cardiac function, and salvages myocardium in rat model of myocardial injury

Affiliations

Licorice treatment prevents oxidative stress, restores cardiac function, and salvages myocardium in rat model of myocardial injury

Shreesh Kumar Ojha et al. Toxicol Ind Health. 2015 Feb.

Abstract

The present study examined the effects of licorice on antioxidant defense, functional impairment, histopathology, and ultrastructural alterations in isoproterenol (ISP)-induced myocardial injury in rats. Myocardial necrosis was induced by two subcutaneous injection of ISP (85 mg/kg) at an interval of 24 h. Licorice was administered orally for 30 days in the doses of 100, 200, 400, or 800 mg/kg. ISP-treated rats showed impaired hemodynamics, left ventricular dysfunction, and caused depletion of antioxidants and marker enzymes along with lipid peroxidation from myocardium. ISP also induced histopathological and ultrastructural alterations in myocardium. Pretreatment with licorice prevented the depletion of endogenous antioxidants and myocyte injury marker enzymes, inhibited lipid peroxidation, and showed recovery of hemodynamic and ventricular functions. Licorice treatment also reduced myonecrosis, edema, and infiltration of inflammatory cells and showed preservation of subcellular and ultrastructural components. Our results demonstrate that licorice exerts cardioprotection by reducing oxidative stress, augmenting endogenous antioxidants, and restoring functional parameters as well as maintaining structural integrity.

Keywords: Hemodynamics; isoproterenol; myocardial infarction; myocardial necrosis; oxidative stress.

PubMed Disclaimer

Publication types

LinkOut - more resources