Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun;37(12):1896-902.
doi: 10.1111/ejn.12233.

Alterations in hippocampal network oscillations and theta-gamma coupling arise before Aβ overproduction in a mouse model of Alzheimer's disease

Affiliations

Alterations in hippocampal network oscillations and theta-gamma coupling arise before Aβ overproduction in a mouse model of Alzheimer's disease

Romain Goutagny et al. Eur J Neurosci. 2013 Jun.

Abstract

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by memory impairments. Brain oscillatory activity is critical for cognitive function and is altered in AD patients. Recent evidence suggests that accumulation of soluble amyloid-beta (Aβ) induces reorganization of hippocampal networks. However, whether fine changes in network activity might be present at very early stages, before Aβ overproduction, remains to be determined. We therefore assessed whether theta and gamma oscillations and their cross-frequency coupling, which are known to be essential for normal memory function, were precociously altered in the hippocampus. Electrophysiological field potential recordings were performed using complete hippocampal preparations in vitro from young transgenic CRND8 mice, a transgenic mouse model of AD. Our results indicate that a significant proportion of 1-month-old TgCRND8 mice showed robust alterations of theta-gamma cross-frequency coupling in the principal output region of the hippocampus, the subiculum. In addition we showed that, compared to controls, these mice expressed negligible levels of Aβ. Finally, these network alterations were not due to genetic factors as 15-day-old animals did not exhibit theta-gamma coupling alterations. Thus, initial alterations in hippocampal network activity arise before Aβ accumulation and may represent an early biomarker for AD.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources