Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates
- PMID: 23774757
- PMCID: PMC3964314
- DOI: 10.1038/msb.2013.30
Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates
Abstract
The efficient production of biofuels from cellulosic feedstocks will require the efficient fermentation of the sugars in hydrolyzed plant material. Unfortunately, plant hydrolysates also contain many compounds that inhibit microbial growth and fermentation. We used DNA-barcoded mutant libraries to identify genes that are important for hydrolysate tolerance in both Zymomonas mobilis (44 genes) and Saccharomyces cerevisiae (99 genes). Overexpression of a Z. mobilis tolerance gene of unknown function (ZMO1875) improved its specific ethanol productivity 2.4-fold in the presence of miscanthus hydrolysate. However, a mixture of 37 hydrolysate-derived inhibitors was not sufficient to explain the fitness profile of plant hydrolysate. To deconstruct the fitness profile of hydrolysate, we profiled the 37 inhibitors against a library of Z. mobilis mutants and we modeled fitness in hydrolysate as a mixture of fitness in its components. By examining outliers in this model, we identified methylglyoxal as a previously unknown component of hydrolysate. Our work provides a general strategy to dissect how microbes respond to a complex chemical stress and should enable further engineering of hydrolysate tolerance.
Conflict of interest statement
The authors declare that they have no conflict of interest.
Figures






Similar articles
-
Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis.Appl Microbiol Biotechnol. 2012 Jun;94(6):1667-78. doi: 10.1007/s00253-012-4094-0. Epub 2012 May 11. Appl Microbiol Biotechnol. 2012. PMID: 22573268
-
Cellulosic fuel ethanol: alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis.Appl Biochem Biotechnol. 2003 Spring;105 -108:457-69. doi: 10.1385/abab:106:1-3:457. Appl Biochem Biotechnol. 2003. PMID: 12721468
-
Engineering Zymomonas mobilis for Robust Cellulosic Ethanol Production.Trends Biotechnol. 2019 Sep;37(9):960-972. doi: 10.1016/j.tibtech.2019.02.002. Epub 2019 Mar 13. Trends Biotechnol. 2019. PMID: 30876702 Review.
-
A High-Efficacy CRISPR Interference System for Gene Function Discovery in Zymomonas mobilis.Appl Environ Microbiol. 2020 Nov 10;86(23):e01621-20. doi: 10.1128/AEM.01621-20. Print 2020 Nov 10. Appl Environ Microbiol. 2020. PMID: 32978126 Free PMC article.
-
New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis.Appl Microbiol Biotechnol. 2019 Mar;103(5):2087-2099. doi: 10.1007/s00253-019-09620-6. Epub 2019 Jan 19. Appl Microbiol Biotechnol. 2019. PMID: 30661108 Review.
Cited by
-
CceR and AkgR regulate central carbon and energy metabolism in alphaproteobacteria.mBio. 2015 Feb 3;6(1):e02461-14. doi: 10.1128/mBio.02461-14. mBio. 2015. PMID: 25650399 Free PMC article.
-
An assessment of serial co-cultivation approach for generating novel Zymomonas mobilis strains.BMC Res Notes. 2020 Sep 7;13(1):422. doi: 10.1186/s13104-020-05261-5. BMC Res Notes. 2020. PMID: 32894180 Free PMC article.
-
Comparative chemical genomic profiling across plant-based hydrolysate toxins reveals widespread antagonism in fitness contributions.FEMS Yeast Res. 2022 Sep 24;21(1):foac036. doi: 10.1093/femsyr/foac036. FEMS Yeast Res. 2022. PMID: 35883225 Free PMC article.
-
Evolution of the Inhibitory and Non-Inhibitory ε, ζ, and IF1 Subunits of the F1FO-ATPase as Related to the Endosymbiotic Origin of Mitochondria.Microorganisms. 2022 Jul 7;10(7):1372. doi: 10.3390/microorganisms10071372. Microorganisms. 2022. PMID: 35889091 Free PMC article. Review.
-
Prediction and characterization of promoters and ribosomal binding sites of Zymomonas mobilis in system biology era.Biotechnol Biofuels. 2019 Mar 14;12:52. doi: 10.1186/s13068-019-1399-6. eCollection 2019. Biotechnol Biofuels. 2019. PMID: 30911332 Free PMC article.
References
-
- Agrawal M, Wang Y, Chen RR (2012) Engineering efficient xylose metabolism into an acetic acid-tolerant Zymomonas mobilis strain by introducing adaptation-induced mutations. Biotechnol Lett 34: 1825–1832 - PubMed
-
- Almeida JR, Modig T, Petersson A, Hahn-Hagerdal B, Lidén G, Gorwa-Grauslund M-F (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82: 340–349
-
- Amin G, Van den Eynde E, Verachtert H (1983) Determination of by-products formed during the ethanolic fermentation, using batch and immobilized cell systems of Zymomonas mobilis and Saccharomyces bayanus. Eur J Appl Microbiol Biotechnol 18: 1–5
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases