Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013;57(2-4):201-10.
doi: 10.1387/ijdb.130136bc.

Testicular teratomas: an intersection of pluripotency, differentiation and cancer biology

Affiliations
Free article
Review

Testicular teratomas: an intersection of pluripotency, differentiation and cancer biology

Ximena Bustamante-Marín et al. Int J Dev Biol. 2013.
Free article

Abstract

Teratomas represent a critical interface between stem cells, differentiation and tumorigenesis. These tumors are composed of cell types representing all three germ layers reflecting the pluripotent nature of their cell of origin. The study of these curious tumors became possible when Leroy Stevens identified the 129 mouse strain as a model of spontaneous testicular teratoma and later isolated a substrain carrying the Ter mutation, a potent modifier of tumor incidence. Early studies with 129 mice lead to the discovery of embryonal carcinoma (EC) cells which played a foundational role in the embryonic stem (ES) cell field and the study of pluripotency. The cells of origin of testicular teratomas are germ cells. During early development, primordial germ cells diverge from somatic differentiation and establish their pluripotent nature, maintaining or re-expressing core pluripotency genes; Oct4, Sox2 and Nanog. It is believed that a misregulation of male germ cell pluripotency plays a critical role in teratoma development. Several mouse models of teratoma development have now been identified, including a chromosome substitution strain, 129-Chr19(MOLF), conditional Dmrt1 and Pten alleles and the Ter mutation in the Dnd1 gene. However, it is still unknown what role somatic cells and/or physiology play in the sensitivity to teratoma development. These unusual tumors may hold the key to understanding how pluripotency is regulated in vivo.

PubMed Disclaimer

Publication types

Supplementary concepts