Computational model for the analysis of cartilage and cartilage tissue constructs
- PMID: 23784936
- PMCID: PMC3842407
- DOI: 10.1002/term.1751
Computational model for the analysis of cartilage and cartilage tissue constructs
Abstract
We propose a new non-linear poroelastic model that is suited to the analysis of soft tissues. In this paper the model is tailored to the analysis of cartilage and the engineering design of cartilage constructs. The proposed continuum formulation of the governing equations enables the strain of the individual material components within the extracellular matrix (ECM) to be followed over time, as the individual material components are synthesized, assembled and incorporated within the ECM or lost through passive transport or degradation. The material component analysis developed here naturally captures the effect of time-dependent changes of ECM composition on the deformation and internal stress states of the ECM. For example, it is shown that increased synthesis of aggrecan by chondrocytes embedded within a decellularized cartilage matrix initially devoid of aggrecan results in osmotic expansion of the newly synthesized proteoglycan matrix and tension within the structural collagen network. Specifically, we predict that the collagen network experiences a tensile strain, with a maximum of ~2% at the fixed base of the cartilage. The analysis of an example problem demonstrates the temporal and spatial evolution of the stresses and strains in each component of a self-equilibrating composite tissue construct, and the role played by the flux of water through the tissue.
Keywords: cartilage; depth-dependent; mathematical model; multi-phase; osmotic swelling; tissue construct.
Copyright © 2013 John Wiley & Sons, Ltd.
Figures








References
-
- Biot MA. Mechanics of deformation and acoustic propagation in porous media. J Appl Phys. 1962;33(4):1482–1498.
-
- Buschmann MD, Grodzinsky AJ. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. J Biomech Eng. 1995;117(2):179–192. - PubMed
-
- Buschmann MD, Maurer AM, Berger E, et al. A method of quantitative autoradiography for the spatial localization of proteoglycan synthesis rates in cartilage. J Histochem Cytochem. 1996;44(5):423–431. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources