Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Aug 21;42(16):7028-41.
doi: 10.1039/c3cs60139k.

Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances

Affiliations
Review

Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances

Assaf Ben-Moshe et al. Chem Soc Rev. .

Abstract

This paper reviews the recent advances in experiment and theory of the induction of chiroptical effects, primarily circular dichroism (CD), at the plasmonic and excitonic resonances of achiral inorganic nanocrystals (NCs) capped and/or formed with chiral molecules. It also addresses stronger chiroptical effects obtained in intrinsically chiral inorganic nanostructures obtained from growing enantiomeric excess of intrinsically chiral NCs or arranging achiral plasmonic particles in chiral configurations. The accumulated experimental data and theory on various CD induction mechanisms provide an extended set of tools to properly analyze and understand the electromagnetic influence of chiral molecules on inorganic particles and obtain new general insights into the interaction of capping molecules with inorganic NCs. Among the field-induced CD mechanisms developed recently one can name the Coulomb (near-field, dipolar) mechanism for nanostructures much smaller than the wavelength, and for larger nanostructures, the electromagnetic (effective chiral medium), and intrinsically chiral plasmonic mechanisms.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources