Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct;27(10):3959-65.
doi: 10.1096/fj.13-234484. Epub 2013 Jun 21.

Suboptimal nutrition in utero causes DNA damage and accelerated aging of the female reproductive tract

Affiliations

Suboptimal nutrition in utero causes DNA damage and accelerated aging of the female reproductive tract

Catherine E Aiken et al. FASEB J. 2013 Oct.

Abstract

Early life exposure to adverse environments can lead to a variety of metabolic and cardiovascular diseases in offspring. We hypothesize that female reproductive function may also be affected, with subsequent implications for fertility. We used an established maternal low-protein model where animals are born small but undergo rapid postnatal catch-up growth by suckling a control-fed dam (recuperated offspring). Markers of oxidative stress and cellular aging in reproductive tract tissues were assessed at 3 and 6 mo of age. Recuperated offspring had lower birth weight than controls (P<0.01) but caught up during lactation. 4-Hydroxynonenal (4HNE; an indicator of oxidative stress) was increased in recuperated animals compared with controls in both ovaries and oviducts at 6 mo. At 3 and 6 mo, ovaries and oviducts of recuperated offspring had increased mitochondrial (mt)DNA copy number (P<0.01). By contrast, germ-line cells showed no difference in mtDNA copy number, suggesting they were protected from suboptimal maternal nutrition. Oviduct and somatic ovarian telomere length declined more rapidly with age in recuperated animals. This accelerated cellular aging was associated with a declined ovarian reserve in developmentally programmed animals. These findings have significant clinical implications in light of worldwide trends to delayed childbearing.

Keywords: developmental programming; mitochondrial DNA; reproduction; senescence.

PubMed Disclaimer

Publication types

LinkOut - more resources