Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Oct 1;319(16):2409-17.
doi: 10.1016/j.yexcr.2013.06.006. Epub 2013 Jun 22.

In vitro models of angiogenesis and vasculogenesis in fibrin gel

Affiliations
Review

In vitro models of angiogenesis and vasculogenesis in fibrin gel

Kristen T Morin et al. Exp Cell Res. .

Abstract

In vitro models of endothelial assembly into microvessels are useful for the study of angiogenesis and vasculogenesis. In addition, such models may be used to provide the microvasculature required to sustain engineered tissues. A large range of in vitro models of both angiogenesis and vasculogenesis have utilized fibrin gel as a scaffold. Although fibrin gel is conducive to endothelial assembly, its ultrastructure varies substantially based on the gel formulation and gelation conditions, making it challenging to compare between models. This work reviews existing models of endothelial assembly in fibrin gel and posits that differerences between models are partially caused by microstructural differences in fibrin gel.

Keywords: Angiogenesis; Fibrin; Vasculogenesis.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Leung AD, Wong KHK, Tien J. Plasma expanders stabilize human microvessels in microfluidic scaffolds. J Biomed Mater Res A. 2012;100:1815–1822. - PMC - PubMed
    1. Zheng Y, Chen J, Craven M, Choi NW, Totorica S, Diaz-Santana A, Kermani P, Hempstead B, Fischbach-Teschl C, López JA, Stroock AD. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci USA. 2012;109:9342–9347. - PMC - PubMed
    1. Wong C, Inman E, Spaethe R, Helgerson S. Fibrin-based biomaterials to deliver human growth factors. Thromb Haemost. 2003;89:573–582. - PubMed
    1. Grassl ED, Oegema TR, Tranquillo RT. Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J Biomed Mater Res. 2002;60:607–612. - PubMed
    1. Koolwijk P, van Erck MG, de Vree WJ, Vermeer MA, Weich HA, Hanemaaijer R, van Hinsbergh VW. Cooperative effect of TNFalpha, bFGF, and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. J Cell Biol. 1996;132:1177–1188. - PMC - PubMed