Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jan-Feb;1(1):69-82.
doi: 10.1002/wdev.4. Epub 2011 Nov 17.

Salivary gland organogenesis

Affiliations
Review

Salivary gland organogenesis

Wendy M Knosp et al. Wiley Interdiscip Rev Dev Biol. 2012 Jan-Feb.

Abstract

Our understanding of vertebrate salivary gland organogenesis has been largely informed by the study of the developing mouse submandibular gland (SMG), which will be the major focus of this review. The mouse SMG has been historically used as a model system to study epithelial-mesenchymal interactions, growth factor-extracellular matrix (ECM) interactions, and branching morphogenesis. SMG organogenesis involves interactions between a variety of cell types and their stem/progenitor cells, including the epithelial, neuronal, and mesenchymal cells, and their ECM microenvironment, or niche. Here, we will review recent literature that provides conceptual advances in understanding the molecular mechanisms of salivary gland development. We will describe SMG organogenesis, introduce the model systems used to study development, and outline the key signaling pathways and cellular processes involved. We will also review recent research focusing on the identification of stem/progenitor cells in the SMG and how they are directed along a series of cell fate decisions to form a functional gland. The mechanisms that drive SMG organogenesis provide a template to regenerate functional salivary glands in patients who suffer from salivary hypofunction due to irreversible glandular damage after irradiation or removal of tumors. Additionally, these mechanisms may also control growth and development of other organ systems.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources