Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun 21;8(6):e66197.
doi: 10.1371/journal.pone.0066197. Print 2013.

Molecular Genetic Diversity of Major Indian Rice Cultivars over Decadal Periods

Affiliations

Molecular Genetic Diversity of Major Indian Rice Cultivars over Decadal Periods

Gangaprasad Choudhary et al. PLoS One. .

Abstract

Genetic diversity in representative sets of high yielding varieties of rice released in India between 1970 and 2010 was studied at molecular level employing hypervariable microsatellite markers. Of 64 rice SSR primer pairs studied, 52 showed polymorphism, when screened in 100 rice genotypes. A total of 184 alleles was identified averaging 3.63 alleles per locus. Cluster analysis clearly grouped the 100 genotypes into their respective decadal periods i.e., 1970s, 1980s, 1990s and 2000s. The trend of diversity over the decadal periods estimated based on the number of alleles (Na), allelic richness (Rs), Nei's genetic diversity index (He), observed heterozygosity (Ho) and polymorphism information content (PIC) revealed increase of diversity over the periods in year of releasewise and longevitywise classification of rice varieties. Analysis of molecular variance (AMOVA) suggested more variation in within the decadal periods than among the decades. Pairwise comparison of population differentiation (Fst) among decadal periods showed significant difference between all the pairs except a few. Analysis of trends of appearing and disappearing alleles over decadal periods showed an increase in the appearance of alleles and decrease in disappearance in both the categories of varieties. It was obvious from the present findings, that genetic diversity was progressively on the rise in the varieties released during the decadal periods, between 1970s and 2000s.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. A representative gel picture of screening of rice varieties with RM562.
For decoding of the numbers refer Table S1.
Figure 2
Figure 2. Distribution of number of alleles (Na) (A), polymorphism information content (PIC) (B) and genetic diversity (He) (C) estimated from 100 rice varieties using 52 hypervariable microsatellite loci.
Figure 3
Figure 3. Genetic relationship among 100 rice varieties estimated using Unbiased Neighbour-Joining dendrogram of 52 hypervariable microsatellite loci.
Landraces- green colored;1970s-pink colored;1980-red colored;1990s-dark blue colored;2000s-sky blue colored. Rice varieties were represented in numbers. For full details of the varieties refer Table S1.
Figure 4
Figure 4. UPGMA dendrogram based on Nei’s genetic distances using POPGENE v 1.31 showing the genetic relationship of rice genotypes among decadal periods.
The genetic distances between different groups are as follows. Year of releasewise: 4 and Landraces - 10.96, 4 and 3–5.01, 3 and 2–0.97, 2 and 1970s - 4.97, 2 and 1980s- 4.97, 3 and 1–1.41, 1 and 1990s-4.52 and 1 and 2000s-4.52. Longevitywise: 4 and Landraces −9.55, 4 and 3–6.76, 3 and 1970s - 2.78, 3 and 2 -0.93, 2 and 1 - 0.66, 1 and 1980s - 1.18, 1 and 2000s - 1.18, 1 and 1990s - 1.85.
Figure 5
Figure 5. Changes in number of alleles (Na), Nei’s genetic diversity (He) and PIC values over decadal periods.
Figure 6
Figure 6. Appearance and disappearance of alleles over decadal periods.

References

    1. Christiansen MJ, Andersen SB, Ortiz R (2002) Diversity changes in an intensively bred wheat germplasm during the 20th century. Molecular Breeding 9: 1–11.
    1. Tian QZ, Zhou RH, Jia JZ (2005) Genetic diversity trend of common wheat (Triticum aestivum L.) in China revealed with AFLP markers. Genetic Resources and Crop Evolution 52: 325–331.
    1. White J, Law JR, MacKay I, Chalmers KJ, Smith JSC, et al. (2007) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theoretical and Applied Genetics 116: 439–453. - PubMed
    1. Huang X-Q, Wolf M, Ganal MW, Orford S, Koebner RMD, et al. (2007) Did Modern Plant Breeding Lead to Genetic Erosion in European Winter Wheat Varieties? Crop Science 47: 343.
    1. Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. TAG Theoretical and Applied Genetics 108: 920–930. - PubMed

Publication types

LinkOut - more resources