Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun 27;5(6):54.
doi: 10.1186/gm458. eCollection 2013.

Genetic parts to a preventive medicine whole

Affiliations

Genetic parts to a preventive medicine whole

Nicholas J Schork. Genome Med. .

Abstract

Integration of clinical evaluations and whole-genome sequence data from eight individuals in a recent study demonstrates that genetic and clinical information can be combined and applied to preventive medicine. Statistical and graphical tools were developed to assess and visualize the genetic risk of common chronic conditions and to show the changes in disease risk that result from monitoring clinical symptoms over time. This approach provides a direction to consider in the adoption of genetic information in health care, but, like all provocative scientific articles, it raises as many questions as it answers.

Please see related research: http://genomemedicine.com/content/5/6/58.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic of the links between genetic risk and longitudinal clinical assessments for disease surveillance and health maintenance. In this scenario, the probabilities of disease based on genetic variants are calculated at a point in time for as many different conditions as possible, preferably at birth to facilitate lifetime health maintenance. Disease risks deemed high (such as with a probability over 0.5, denoted by the black dotted line) are noted and immediately focused on. Clinical measures are then obtained periodically to monitor disease and inform the calculation of a posterior probability of a disease manifesting itself given an individual's genetic predisposition (depicted as lines emanating from each disease category). Risks above the threshold for intervention are noted (red parts of lines). The graph also depicts a hypothetical setting (dashed red line) in which risk for metabolic disease is high, clinical measures indicate increased risk and an intervention is not undertaken, leading to disease and ultimately death from that disease.

References

    1. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–1558. doi: 10.1126/science.1235122. - DOI - PMC - PubMed
    1. Gahl WA, Markello TC, Toro C, Fajardo KF, Sincan M, Gill F, Carlson-Donohoe H, Gropman A, Pierson TM, Golas G, Wolfe L, Groden C, Godfrey R, Nehrebecky M, Wahl C, Landis DM, Yang S, Madeo A, Mullikin JC, Boerkoel CF, Tifft CJ, Adams D. The National Institutes of Health Undiagnosed Diseases Program: insights into rare diseases. Genet Med. 2012;14:51–59. doi: 10.1038/gim.0b013e318232a005. - DOI - PMC - PubMed
    1. Patel CJ, Sividas A, Tabassum R, Preeprem T, Zhao J, Arafat D, Chen R, Morgan AA, Martin GS, Brigham KL, Butte AJ, Gibson G. Whole genome sequencing in support of wellness and health maintenance. Genome Med. 2013;5:58. - PMC - PubMed
    1. Roberts NJ, Vogelstein JT, Parmigiani G, Kinzler KW, Vogelstein B, Velculescu VE. The predictive capacity of personal genome sequencing. Sci Transl Med. 2012;4:133ra158. - PMC - PubMed
    1. Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, Berglund G, Altshuler D, Nilsson P, Groop L. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med. 2008;359:2220–2232. doi: 10.1056/NEJMoa0801869. - DOI - PubMed

LinkOut - more resources