Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun;43(2):78-85.

Analysis of recreational closed-circuit rebreather deaths 1998-2010

Affiliations
  • PMID: 23813461

Analysis of recreational closed-circuit rebreather deaths 1998-2010

Andrew W Fock. Diving Hyperb Med. 2013 Jun.

Abstract

Introduction: Since the introduction of recreational closed-circuit rebreathers (CCRs) in 1998, there have been many recorded deaths. Rebreather deaths have been quoted to be as high as 1 in 100 users.

Methods: Rebreather fatalities between 1998 and 2010 were extracted from the Deeplife rebreather mortality database, and inaccuracies were corrected where known. Rebreather absolute numbers were derived from industry discussions and training agency statistics. Relative numbers and brands were extracted from the Rebreather World website database and a Dutch rebreather survey. Mortality was compared with data from other databases. A fault-tree analysis of rebreathers was compared to that of open-circuit scuba of various configurations. Finally, a risk analysis was applied to the mortality database.

Results: The 181 recorded recreational rebreather deaths occurred at about 10 times the rate of deaths amongst open-circuit recreational scuba divers. No particular brand or type of rebreather was over-represented. Closed-circuit rebreathers have a 25-fold increased risk of component failure compared to a manifolded twin-cylinder open-circuit system. This risk can be offset by carrying a redundant 'bailout' system. Two-thirds of fatal dives were associated with a high-risk dive or high-risk behaviour. There are multiple points in the human-machine interface (HMI) during the use of rebreathers that can result in errors that may lead to a fatality.

Conclusions: While rebreathers have an intrinsically higher risk of mechanical failure as a result of their complexity, this can be offset by good design incorporating redundancy and by carrying adequate 'bailout' or alternative gas sources for decompression in the event of a failure. Designs that minimize the chances of HMI errors and training that highlights this area may help to minimize fatalities.

Keywords: deaths; diving accidents; rebreathers/closed circuit; safety; technical diving.

PubMed Disclaimer

MeSH terms