Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jul 1;2(1):21.
doi: 10.1186/2047-2994-2-21.

Epidemiology of Clostridium difficile infection in Asia

Affiliations

Epidemiology of Clostridium difficile infection in Asia

Deirdre A Collins et al. Antimicrob Resist Infect Control. .

Abstract

While Clostridium difficile infection (CDI) has come to prominence as major epidemics have occurred in North America and Europe over the recent decade, awareness and surveillance of CDI in Asia have remained poor. Limited studies performed throughout Asia indicate that CDI is also a significant nosocomial pathogen in this region, but the true prevalence of CDI remains unknown. A lack of regulated antibiotic use in many Asian countries suggests that the prevalence of CDI may be comparatively high. Molecular studies indicate that ribotypes 027 and 078, which have caused significant outbreaks in other regions of the world, are rare in Asia. However, variant toxin A-negative/toxin B-positive strains of ribotype 017 have caused epidemics across several Asian countries. Ribotype smz/018 has caused widespread disease across Japan over the last decade and more recently emerged in Korea. This review summarises current knowledge on CDI in Asian countries.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Ribotype distributions for studies in China (A,B), Hong Kong (C), Japan (D-G) and Korea (H-K). A: n = 75 isolates collected in 2008; 33 ribotypes identified [37]. B: n = 110, December 2008-May 2009; 16 ribotypes [39]. C: n = 345, 2009; 106 ribotypes [40]. D: n = 87, March 1996-November 1999; 12 ribotypes [8]. E: n = 148, November 1999-October 2004; 26 ribotypes [16]. F: n = 71, April 2005-March 2008; 20 ribotypes [14]. G: n = 87, 2003–2007; 18 ribotypes [17]. H: n = 187, 1980–2006; 39 ribotypes [27]. I: n = 105, 1995–2008; 11 ribotypes [32]. J: n = 337 toxigenic isolates, 2006–2008; 50 ribotypes [31]. K: n = 194, 2009–2010; 54 ribotypes [19].

References

    1. Clements AC, Magalhaes RJ, Tatem AJ, Paterson DL, Riley TV. Clostridium difficile PCR ribotype 027: assessing the risks of further worldwide spread. Lancet Infect Dis. 2010;10(6):395–404. doi: 10.1016/S1473-3099(10)70080-3. - DOI - PMC - PubMed
    1. Al-Barrak A, Embil J, Dyck B, Olekson K, Nicoll D, Alfa M, Kabani A. An outbreak of toxin A negative, toxin B positive Clostridium difficile-associated diarrhea in a Canadian tertiary-care hospital. Can Commun Dis Rep. 1999;25(7):65–69. - PubMed
    1. Kuijper E, Weerdt J, Kato H, Kato N, Dam A, Vorm E, Weel J, Rheenen C, Dankert J. Nosocomial outbreak of Clostridium difficile-associated diarrhoea due to a clindamycin-resistant enterotoxin A-negative strain. Eur J Clin Microbiol Infect Dis. 2001;20(8):528–534. - PubMed
    1. Drudy D, Harnedy N, Fanning S, Hannan M, Kyne L. Emergence and control of fluoroquinolone-resistant, toxin A-negative, toxin B-positive Clostridium difficile. Infect Control Hosp Epidemiol. 2007;28(8):932–940. doi: 10.1086/519181. - DOI - PubMed
    1. Mavros MN, Alexiou VG, Vardakas KZ, Tsokali K, Sardi TA, Falagas ME. Underestimation of Clostridium difficile infection among clinicians: an international survey. Eur J Clin Microbiol Infect Dis. 2012;31(9):2439–2444. doi: 10.1007/s10096-012-1587-9. - DOI - PubMed