Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Aug;1842(8):1232-9.
doi: 10.1016/j.bbadis.2013.06.014. Epub 2013 Jun 29.

Recent advances in the application of metabolomics to Alzheimer's Disease

Affiliations
Review

Recent advances in the application of metabolomics to Alzheimer's Disease

Eugenia Trushina et al. Biochim Biophys Acta. 2014 Aug.

Abstract

The pathophysiological changes associated with Alzheimer's Disease (AD) begin decades before the emergence of clinical symptoms. Understanding the early mechanisms associated with AD pathology is, therefore, especially important for identifying disease-modifying therapeutic targets. While the majority of AD clinical trials to date have focused on anti-amyloid-beta (Aβ) treatments, other therapeutic approaches may be necessary. The ability to monitor changes in cellular networks that include both Aβ and non-Aβ pathways is essential to advance our understanding of the etiopathogenesis of AD and subsequent development of cognitive symptoms and dementia. Metabolomics is a powerful tool that detects perturbations in the metabolome, a pool of metabolites that reflects changes downstream of genomic, transcriptomic and proteomic fluctuations, and represents an accurate biochemical profile of the organism in health and disease. The application of metabolomics could help to identify biomarkers for early AD diagnosis, to discover novel therapeutic targets, and to monitor therapeutic response and disease progression. Moreover, given the considerable parallel between mouse and human metabolism, the use of metabolomics provides ready translation of animal research into human studies for accelerated drug design. In this review, we will summarize current progress in the application of metabolomics in both animal models and in humans to further understanding of the mechanisms involved in AD pathogenesis.

Keywords: Alzheimer's Disease; Animal models; Biomarkers; Cerebrospinal fluid; Metabolomics; Plasma.

PubMed Disclaimer

References

    1. Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology. 2013 - PMC - PubMed
    1. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–766. - PubMed
    1. Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature. 2004;430:631–639. - PMC - PubMed
    1. Jack CR, Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet neurology. 2010;9:119–128. - PMC - PubMed
    1. Holtzman DM, Morris JC, Goate AM. Alzheimer’s disease: the challenge of the second century. Sci Transl Med. 2011;3:77sr71. - PMC - PubMed

Publication types