Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct;382(1-2):225-35.
doi: 10.1007/s11010-013-1738-z. Epub 2013 Jul 2.

Distinctive microRNA expression signatures in proton-irradiated mice

Affiliations

Distinctive microRNA expression signatures in proton-irradiated mice

Shahid Yar Khan et al. Mol Cell Biochem. 2013 Oct.

Abstract

Proton particles comprise the most abundant ionizing radiation (IR) in outer space. These high energy particles are known to cause frequent double- and single-stranded DNA lesions that can lead to cancer and tumor formation. Understanding the mechanism of cellular response to proton-derived IR is vital for determining health risks to astronauts during space missions. Our understanding of the consequences of these high energy charged particles on microRNA (miRNA) regulation is still in infancy. miRNAs are non-coding, single-stranded RNAs of ~22 nucleotides that constitute a novel class of gene regulators. They regulate diverse biological processes, and each miRNA can control hundreds of gene targets. To investigate the effect of proton radiation on these master regulators, we examined the miRNA expression in selected mice organs that had been exposed to whole-body proton irradiation (2 Gy), and compared this to control mice (0 Gy exposure). RNA was isolated from three tissues (testis, brain, and liver) from treated and control mice and subjected to high-throughput small RNA sequencing. Bioinformatics analysis of small RNA sequencing data revealed dysregulation of (p < 0.05; 20 up- and 10 down-regulated) 14 mouse testis, 8 liver, and 8 brain miRNAs. The statistically significant and unique miRNA expression pattern found among three different proton-treated mouse tissues indicates a tissue-specific response to proton radiation. In addition to known miRNAs, sequencing revealed differential expression of 11 miRNAs in proton-irradiated mice that have not been previously reported in association with radiation exposure and cancer. The dysregulation of miRNAs on exposure to proton radiation suggest a possible mechanism of proton particles involvement in the onset of cell tumorgenesis. In summary, we have established that specific miRNAs are vulnerable to proton radiation, that such differential expression profile may depend upon the tissue, and that there are more miRNAs affected by proton radiation than have been previously observed.

PubMed Disclaimer

References

    1. Adv Space Res. 2002;30(4):1033-44 - PubMed
    1. Epigenetics. 2010 Oct 1;5(7):656-63 - PubMed
    1. DNA Repair (Amst). 2010 Nov 10;9(11):1170-5 - PubMed
    1. PLoS One. 2011;6(8):e22988 - PubMed
    1. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19300-5 - PubMed

Publication types

LinkOut - more resources