Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jul;6(4):429-35.
doi: 10.1161/CIRCOUTCOMES.111.000093. Epub 2013 Jul 2.

A prediction model to identify patients at high risk for 30-day readmission after percutaneous coronary intervention

Affiliations

A prediction model to identify patients at high risk for 30-day readmission after percutaneous coronary intervention

Jason H Wasfy et al. Circ Cardiovasc Qual Outcomes. 2013 Jul.

Abstract

Background: The Affordable Care Act creates financial incentives for hospitals to minimize readmissions shortly after discharge for several conditions, with percutaneous coronary intervention (PCI) to be a target in 2015. We aimed to develop and validate prediction models to assist clinicians and hospitals in identifying patients at highest risk for 30-day readmission after PCI.

Methods and results: We identified all readmissions within 30 days of discharge after PCI in nonfederal hospitals in Massachusetts between October 1, 2005, and September 30, 2008. Within a two-thirds random sample (Developmental cohort), we developed 2 parsimonious multivariable models to predict all-cause 30-day readmission, the first incorporating only variables known before cardiac catheterization (pre-PCI model), and the second incorporating variables known at discharge (Discharge model). Models were validated within the remaining one-third sample (Validation cohort), and model discrimination and calibration were assessed. Of 36,060 PCI patients surviving to discharge, 3760 (10.4%) patients were readmitted within 30 days. Significant pre-PCI predictors of readmission included age, female sex, Medicare or State insurance, congestive heart failure, and chronic kidney disease. Post-PCI predictors of readmission included lack of β-blocker prescription at discharge, post-PCI vascular or bleeding complications, and extended length of stay. Discrimination of the pre-PCI model (C-statistic=0.68) was modestly improved by the addition of post-PCI variables in the Discharge model (C-statistic=0.69; integrated discrimination improvement, 0.009; P<0.001).

Conclusions: These prediction models can be used to identify patients at high risk for readmission after PCI and to target high-risk patients for interventions to prevent readmission.

Keywords: outcomes research; percutaneous coronary intervention; performance measures.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources