Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013:69:153-67.
doi: 10.1007/978-94-007-6889-5_9.

Essential roles of peroxisomally produced and metabolized biomolecules in regulating yeast longevity

Affiliations
Review

Essential roles of peroxisomally produced and metabolized biomolecules in regulating yeast longevity

Adam Beach et al. Subcell Biochem. 2013.

Abstract

The essential role of the peroxisome in oxidizing fatty acids, maintaining reactive oxygen species homeostasis and replenishing tricarboxylic acid cycle intermediates is well known. Recent findings have broadened a spectrum of biomolecules that are synthesized and metabolized in peroxisomes. Emergent evidence supports the view that, by releasing various biomolecules known to modulate essential cellular processes, the peroxisome not only operates as an organizing platform for several developmental and differentiation programs but is also actively involved in defining the replicative and chronological age of a eukaryotic cell. The scope of this chapter is to summarize the evidence that the peroxisome defines yeast longevity by operating as a system controller that: (1) modulates levels of non-esterified fatty acids and diacylglycerol; (2) replenishes tricarboxylic acid cycle intermediates destined for mitochondria; and (3) contributes to the synthesis of polyamines. We critically evaluate molecular mechanisms underlying the essential role of peroxisomally produced and metabolized biomolecules in governing cellular aging in yeast.

PubMed Disclaimer

LinkOut - more resources