Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct;73(10):785-97.
doi: 10.1002/dneu.22104. Epub 2013 Aug 20.

HCN1 subunits contribute to the kinetics of I(h) in neonatal cortical plate neurons

Affiliations

HCN1 subunits contribute to the kinetics of I(h) in neonatal cortical plate neurons

Luminita Stoenica et al. Dev Neurobiol. 2013 Oct.

Abstract

The distribution of ion channels in neurons regulates neuronal activity and proper formation of neuronal networks during neuronal development. One of the channels is the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel constituting the molecular substrate of hyperpolarization-activated current (I(h)). Our previous study implied a role for the fastest activating subunit HCN1 in the generation of Ih in rat neonatal cortical plate neurons. To better understand the impact of HCN1 in early neocortical development, we here performed biochemical analysis and whole-cell recordings in neonatal cortical plate and juvenile layer 5 somatosensory neurons of HCN1(-/-) and control HCN1(+/+) mice. Western Blot analysis revealed that HCN1 protein expression in neonatal cortical plate tissue of HCN(+/+) mice amounted to only 3% of the HCN1 in young adult cortex and suggested that in HCN1(-/-) mice other isoforms (particularly HCN4) might be compensatory up-regulated. At the first day after birth, functional ablation of the HCN1 subunit did not affect the proportion of Ih expressing pyramidal cortical plate neurons. Although the contribution of individual subunit proteins remains open, the lack of HCN1 markedly slowed the current activation and deactivation in individual I(h) expressing neurons. However, it did not impair maximal amplitude/density, voltage dependence of activation, and cAMP sensitivity. In conclusion, our data imply that, although expression is relatively low, HCN1 contributes substantially to I(h) properties in individual cortical plate neurons. These properties are significantly changed in HCN1(-/-), either due to the lack of HCN1 itself or due to compensatory mechanisms.

Keywords: current kinetics; hyperpolarization-activated current; neocortex; neural development; patch-clamp.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources