Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jul 7;139(1):014506.
doi: 10.1063/1.4812396.

Spatial decomposition and assignment of infrared spectra of simple ions in water from mid-infrared to THz frequencies: Li(+)(aq) and F(-)(aq)

Affiliations

Spatial decomposition and assignment of infrared spectra of simple ions in water from mid-infrared to THz frequencies: Li(+)(aq) and F(-)(aq)

Maciej Smiechowski et al. J Chem Phys. .

Abstract

Ionic hydration is of fundamental relevance from chemical reactivity in aqueous solution to biomolecular function at physiological conditions. Vibrational spectroscopy belongs to the most widely used experimental methods in studies of solvation phenomena. There is, however, still limited molecular understanding as to how the vibrational response of solutions is modulated by the presence of solvation shells around solutes, i.e., by interfacial water. Liquid-state THz spectroscopy has been demonstrated to be able to detect even small solute-induced changes of the hydrogen bond dynamics at the solute-water interface. In many cases it reveals rather long-ranged dynamical correlations around solutes, involving many solvent molecules, that can be tackled theoretically by analyzing vibrational spectra in a distance-resolved manner. Here, several spatial decomposition schemes for infrared spectra are used to reveal the distinct distance- and frequency-dependent contributions of the solvation shells to the spectral response in aqueous solutions of Li(+) and F(-). The importance of an explicit representation of the solute's electronic structure for the proper description of solute-solvent polarization effects is demonstrated. The solvent's response to the presence of the solute is systematically disentangled and reveals important differences between the spectral responses due to intra- and intermolecular motion as probed in the mid- and far-infrared spectral windows, respectively.

PubMed Disclaimer

LinkOut - more resources