Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Jun 10;270(908):459-82.
doi: 10.1098/rstb.1975.0023.

On the relation between displacement currents and activation of the sodium conductance in the squid giant axon

On the relation between displacement currents and activation of the sodium conductance in the squid giant axon

E Rojas et al. Philos Trans R Soc Lond B Biol Sci. .

Abstract

The early time course of the current passing across the membrane in squid giant axons in which the ionic currents have been blocked reveals substantial asymmetries during and after the application of hyperpolarizing and depolarizing voltage-clamp pulses of identical size. Since the integral of the 'on' and 'off' current transients is zero, these currents must result from charge movements confined to the membrane and, therefore, they are nonlinear displacement currents. The steady state rearrangement of the charges as a consequence of sudden displacements of the membrane potential is consistent with a Boltzmann distribution of charges between two states characterized by different energy levels. Following changes in membrane potential the charges undergo a first order transition between these states. The relaxation time constant for the transition at a given temperature is a function of membrane potential. We propose that these displacement currents arise from a redistribution of the charges involved in the sodium gating system.

PubMed Disclaimer

LinkOut - more resources